AGH

Design of an area-effective small digital cell library for pixel readout chip

WP3 sessions at the AIDA annual meeting , March 29th, DESY 2012 R.Szczygiel, P. Grybos, P.Otfinowski

Outline

1) Library design targets

2) Library description

3) Current status

Library design targets

The library is optimized for area, for small logic block building

1) there are no well and substrate taps in the cells, separate "TAP" cell is used
2) $P M O S / N M O S$ are not balanced
3) Cells not optimized for routing density - there is some routing in the MET2 layer in d-flop and latch cells
4) D-flops and latches have no buffered outputs, separate buffers available
5) set and reset signals of the D-flops are not connected internally (have to be connected externally)

Routing information - CMOS GF130nm

AGH

Metal	routing direction	pitch $[\mu \mathrm{m}]$	offset $[\mu \mathrm{m}]$
MET1	vertical	0.51	0.255
MET2	horizontal	0.48	0.0
MET3	vertical	0.51	0.255
MET4	horizontal	0.48	0.0

Row height: $2.4 \mu m$
Placement x-pitch: $0.51 \mu \mathrm{~m}$
Power net name: VDD
Ground net name: VSS
Substrate net name: VSSS, VDDD

Cell list

AGH

Cell name

AND21X1
2. $\mathrm{AOI} 21 \mathrm{X1}$
3. BUFX1
4. DFFSBRBX1
5. DFFSBX1
6. DFFSX1
7. DFFRX1
8. DFFRBX1
9. DFFX1
10. DLATCHX1
11. IMUX21X1
12. INV1X1
13. INV1X2
14. INV1X4
15. MUX21X1
16. NAND21X1
17. NOR21X1
18. OAI21X1
19. OR21X1
20. TAP

2-input AND
AND-OR-INVERT with 2 input AND

Buffer

D-flop with async set active low and reset active low; set has higher priority

D-flop with async set active low
D-flop with async set active high
D-flop with async reset active high
D-flop with async reset active low
D-flop
Transparent latch
Inverting 2-input multiplexer

Inverter

Inverter $2 x$ drive
Inverter 4x drive
2-input multiplexer
2-input NAND
2-input NOR
OR-AND-INVERT with 2 input OR
2-input OR
Substrate and well contact
status

DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC

DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC, LVS, QRC
DRC
layout size [$\mu \mathrm{m} \times \mu \mathrm{m}$]

$$
\begin{aligned}
& 2.04 \times 2.4=4.896 \\
& 2.04 \times 2.4=4.896 \\
& 1.53 \times 2.4=3.672 \\
& 10.2 \times 2.4=24.48 \\
& \\
& 8.16 \times 2.4=19.584 \\
& 6.63 \times 2.4=15.912 \\
& 3.57 \times 2.4=8.568 \\
& 3.06 \times 2.4=7.344
\end{aligned}
$$

$\mathbf{1 . 0 2} \mathbf{x} \mathbf{2 . 4}=\mathbf{2 . 4 4 8}$
$1.53 \times 2.4=3.672$
$2.55 \times 2.4=6.12$
$3.57 \times 2.4=8.568$
$1.53 \times 2.4=3.672$
$1.53 \times 2.4=3.672$
$2.04 \times 2.4=4.896$
$2.04 \times 2.4=4.896$
$1.02 \times 2.4=2.448$

Cell - example

AGH

$$
\begin{gathered}
\text { IMUX21X1 } \\
3,06 \mu \mathrm{~m} \times 2,4 \mu \mathrm{~m}
\end{gathered}
$$

Cell - example

AGH

DFFRBX1
$8,16 \mu \mathrm{~m} \times 2,4 \mu \mathrm{~m}$

Cell - example

AGH

> DLATCHX1
> $3,57 \mu \mathrm{~m} \times 2,4 \mu \mathrm{~m}$

Current status

AGH

Task
Layout pre-study (define row height, metal
pitch/offset, etc.)
dfII technology file modifications
Abstract generator configuration
Cell schematics
Cell layouts
Verilog models
Verilog models verification (vs analog simulations)

Timing characterization setup (ETS 10.11)

Synthesis tests
Technology LEF files
Place \& route tests
Import to Virtuoso tests
Post-route DRC/LVS
Post-layout verilog simulations
Mixed-mode simulations

Status
Done

90\%
90\%
100%
100\%
90\%
5\%

Generated for ss, tt, ff corners and $\mathrm{VDD}=1.2, \mathrm{VDD}=1.5$

50\%
20\%
0\%
0\%
0%
0%
50\%

