CNM Activities related to AIDA-WP3

Manuel Lozano
CNM (CSIC) Barcelona, Spain
29th March 2012

Participation in AIDA project

- Procurement of test structures and detectors suitable for 3D integration
- 3D sensors
- Active edge ("slim edge") devices for seamless tyling
- Full wafer pixel detectors
- Bump bonding
- Testing
- Budget:
 - WP3.2: 50,000 €
 - WP9.4: 22,000 €

3D pixel technology

- 3D pixel technology developed at CNM
- CNM was the first institute in the world successfully producing 3D pixel detectors with double side etching technology
- This technology was invented at Glasgow (Giulio Pellegrini), fully developed at Glasgow, and now adopted by ATLAS-IBL

3D pixel detectors for IBL

- 3D pixel detectors for Insertable B-layer for ATLAS
- Double side configuration
- October 2009 common layout (compatible)
- February 2011 end pre-series fabrication
- March 2011 started pre-production for IBL
- 2012 fabrication -> 8 months -> Finished
- Manufacturers: FBK (Trento) and CNM

3D pixel detectors for AIDA

- Masks for 3D pixel fabrication already made
 - FE-I4
 - Medipix
- Devices manufactured, and tested. Very satisfactory behavior
- Collaborations with
 - ATLAS-IBL: sensor FE-I4
 - CMS: sensor ROC (at this moment being characterized at CNM)
 - LHCb: preliminary tests with sensor Medipix2
 - Diamond Light Source: sensor Medipix2
- More wafers can be processed for AIDA. Reduced cost as the masks are available (asking for permission)
- 3D devices are intrinsically edgeless

Slim edge detectors

- Three approaches:
- 1.- Active edge (sidewall same doping as backplane)
- 2.- Trench isolation
- 3.- Cleaving and passivation

1.- Active edge

- CNM developed the technology, but currently are not working on it
- Problems:
 - Need support wafer
 - Fragile structure
 - Early breakdown
 - Difficult to deplete the corner close to the ohmic contact

2.- Trench isolation

- The idea is to separate the electric field from the edges.
- The cutting could be done in any way (saw, plasma, laser, cleaving)

300um wafers

2.- Trench isolation

- We are working in this approach for LHCb collaboration
- The technology is ready
- The masks are designed, Medipix3 sensors
- Preliminary run finished (without trehnches)

2.- Trench isolation

- The final run with trenches currently in process at the Clean Room
- The trenches isolate, but the sidewall cuts have to be passivated
 - If not, the leackage current is too high
- We are passivating the sidewall with nanolaminate

3.- Slim edge cleaving detectors

- New approach: trench wall passivation by Al₂O₃ deposited by ALD (Atomic Layer Deposition)
- Experiments conducted in the framework of RD50 collaboration
- Laser cleaving and passivation at Naval Research Laboratory

3.- Slim edge cleaving detectors

- In this common project CNM has provided 3D FE-I3, FE-I4, and microstrips and planar Medipix3 detectors
- The cutting and passivation is made at NRL
- First devices are under test with promising results
 - CNM is trying another approach, plasma cutting and ALD passivation, all available in our Clean Room

FE-I3 3D pixel detector

Other possible activities

- Fabrication on 6 inches:
 - N-on-P technology in process
 - Pixel sensors
 - Dummy devices for flip chip or wafer bonding tests
- Flip chip of Medipix or FE-I4 chips
- Final option:
 - Transfer all or part of money from WP3 to WP9
 - 5.4 % of WP3 (0.6 % of all project)
 - WP9.4 Silicon Tracking (advanced deliverable)
 - At WP9.4 CNM is providing strip sensors with advanced technologies and our budget there is too low

