# Silicon Tracking and Vertexing at the Linear Colliders

**M. Winter** (IPHC-Strasbourg)

DESY - 26 March 2012

# Contents

- Basic features of the ILC and CLIC projects :
  - prominent physics objectives
  - accelerator related running conditions
- Experimental concepts under development :
  - · SiD & ILD at ILC, and their extensions at CLIC
- Tracking and Vertexing :
  - Objectives, Sub-systems, Technologies, Limitations  $\Rightarrow$  R&D
- Summary

# **ILC & CLIC : Prominent Features**

- LC  $\equiv$  next large scale accelerator after the start of LHC :
  - $* e^+e^-$  collisions
  - \* 2 accelerator projects under way :
    - ILC : collision energy up to 1 TeV  $\rightarrow$  most advanced
    - CLIC : collision energy up to 3 TeV  $\rightarrow$  highest potential but most challenging
- Scientific motivation :
  - \* investigate in detail the mechanism of EW Symmetry Breaking
  - \* search for and study new physics at the highest energy scale
    - ... elaborate on LHC results ...
- Highlights of the project :
  - \* machine : very well known beam parametres
  - \* experiment : high precision (multi-jet) final state reconstruction capability over  $\sim$  4 $\pi$  solide angle





# **Experiments and their Strong Points**

ILD ⊳

- 2 detector concepts proposed for ILC (L.o.I. in 2009) :
  - \* SiD: entire tracking based on Si sensors
  - \* ILD: Central tracking provided by TPC
    Intermediate & End-cap trackers based on Si sensors
  - \* both concepts extended to CLIC running (see CDR-2012)
- Specific aspects exploiting ILC running conditions :
  - \* very well known beam energy and polarisation
  - \* relatively moderate background (<< at LHC)
    - $\Rightarrow$  detector design governed by **physics driven specifications**
  - \* beam time structure : 1 ms BX interspaced with 199 ms without beam
    - $\Rightarrow$  switch off apparatus inbetween bunch trains to save power







• CLIC : 156 ns long bunch trains separated by 20 ms

 $\Rightarrow$  some sub-systems (e.g. vertex detector) feature more severe specifications (see slide Nr.8)

### **Tracking and Vertexing Performance Goals**

#### • Tracking:

- \* reconstruct all charged tracks down to p << 1 GeV/c, including kincks
  - ⇒ hermiticity, precision, low material budget (multiple scatt., second. interactions)  $\hookrightarrow$  ILD/SiD:  $\sigma_{1/p_t} \simeq 2/5 \times 10^{-5} \text{GeV}^{-1}$
- \* allow precise extrapolation to calorimetres for  $e^{\pm}\gamma$  separation and for identifying "all" showers generated by neutral particles (PFA)
- Vertexing:
  - \* achieve high efficiency and purity flavour tagging (charm & tau !!!)

 $\hookrightarrow \sigma_{R\phi,Z} \leq 5 \oplus 10/p \cdot sin^{3/2} \theta \ \mu m \quad \rhd \ \text{LHC:} \ \sigma_{R\phi} \simeq 12 \oplus 70/p \cdot sin^{3/2} \theta$ 

 $\triangleright$  Comparison:  $\sigma_{R\phi,Z}$  (ILD) with VTX made of ATLAS-IBL or ILD-VTX pixels:





# **Tracking Devices**

### SiD: B=4 T



- \* SiD : Main tracker  $\equiv$  5 layers (25+2×10 m<sup>2</sup>) of Si  $\mu$ strips
  - $\Rightarrow$  5 points/track
  - 3 layers at shallow angle in each end-cap



- \* **ILD** : Main tracker  $\equiv$  TPC  $\Rightarrow$  **224** points/track
  - SET (25m<sup>2</sup>) & ETD (2 $\times$ 10m<sup>2</sup>) around TPC
  - SIT (2 layers, 3 m<sup>2</sup>) bridging TPC with VTX
  - 7 layers in each end-cap
  - $\cdot ~~\lesssim$  0.65% X $_0$ /layer  $\sigma_{R\phi/Z}$  = 7/50 $\mu m^2$
- R&D topics:
  - $* \ \mu$ strip sensors : edgeless  $\rightarrowtail$  3D planar
    - ▷ thinner, lower voltage, larger wafers, ...
  - \* pixel sensors : thickness, large area, cost, power, ...
  - \* integration needs: --- low-power, on-sensor connectable, read-out ASICs
    - -- light, heat conducting & rigid supports very light cooling system
  - \* power distribution and pulsing over large surfaces in high magnetic field > mechanical stability



# **ILC Vertexing Devices**

- Main characteristics:
  - \* SiD : short barrel complemented by end-cap disks
  - \* ILD : long barrel geometry
  - $\ast\,$  Layers : 2 options (R  $\simeq$  15 to 60 mm)
    - $\cdot$  5 single-sided layers :  $\lesssim$  0.2% X $_0$ /layer
    - $\cdot~$  3 double-sided layers :  $\lesssim$  0.3% X\_0/layer
    - $\cdot \sigma_{R\phi,Z} \lesssim 3 \, \mu m$
  - \* 2 read-out alternatives : during trains or inbetween trains
    - during 1 ms trains  $\Rightarrow$  fast read-out against occupancy
      - · ILD : 10-50  $\mu s$  · SiD : 0(1)  $\mu s \rightarrow$  standalone tracking

- Issues:
  - High precision, thin and low power pixel sensors
    adapted to relatively high beam related background
  - \* Material budget keeping multiple scattering at an affordable level compatible with required sensor cooling



SiD

### ILD



# **ILC Vertexing Devices: Major R&D Issues**

- **Pixel technology** 
  - Trade-off between precision (small pixels) and read-out speed ⋇
  - Several technologies considered : \*
    - continuous read-out : CMOS sensors (various types), DEPFETs
    - delayed read-out : FPCCD, ISIS (?), ...
  - \* Major R&D issues:
    - cope with beam-related background in innermost layer  $\Rightarrow$  read-out speed
    - power consumption  $\rightarrow$  avoid active cooling (material budget  $\searrow$ )
- Integration issues
  - \* material budget :
    - flex cable
    - mechanical support
  - \* power distribution and pulsing over large surfaces in high magnetic field  $\triangleright$  mechanical stability
  - \* micro-channel cooling would be very helpful ....





50 µm sensors

to servicing board ~ 1m

Low mass flex cable

12 cm

support

# **CLIC Motivated R&D Goals**

#### Prominent changes w.r.t. ILC :

- \* Beam time structure : 156 ns long trains of 312 bunches (0.5 ns spacing)
- $\ast\,$  Background increase : beamstrahlung &  $\gamma\gamma$  collisions
  - ←→ impacts nominally vertex detector inner layers (occupancy)
- st Continuous read-out mandatory :  $t_{int}$  < 10 ns imposed (keeping 3  $\mu m$  resolution)
  - $\hookrightarrow$  present technologies far from this set of performances

#### • Major R&D issues :

- \* Investigate 3D Integrated technologies  $\hookrightarrow$  Through Silicon Vias (TSV)
- \* Allows combining thin tiers dedicated to specific & complementary functionalities: charge sensing, analog r.o., digital proc., ...
- \* Allows integrating high density signal processing  $\mu$ circuits in small pixels !



- Development started in 2009 from various sensing technologies (hybrid, CMOS, ...)
  - \* facing interconnectivity difficulties
  - \* BUT technology has very high potential for Position Sensitive Detectors  $\Rightarrow$  broad interest

# SUMMARY

- ILC/CLIC: world wide project driving multi-directional R&D on Si based Position Sensitive Detectors
- 2 major experimental concepts :
  - \* SiD (only Si tracking) and ILD (combining Si detectors with TPC)
  - $_{*}$  both feature  $\sim$  50 m $^{2}$  Si  $\mu$ strips and  $\gtrsim$  1/2 m $^{2}$  Si pixels
- State-of-the-art not yet complying with specifications  $\Rightarrow$  intensive R&D :
  - \*  $\mu {\rm strips}$  : edgeless, thinner, ... (goals as for LHC upgrades)
  - \* **Pixel sensors :** 2D sensors with thin, fully depleted, sensitive volume hosting integrated FEE

 $\hookrightarrow$  3D  $\equiv$  multi-tier sensors with pixel-level interconnections (10-20 $\mu m$  pitch TSV)

And : stitching, redistribution layer, ...

- \* Flex cable & connectivity : high density traces, very thin kapton, redistribution layer, wireless connectivity
- \* Mechanical supports : very light and rigid, heat conducting, alignment monitoring, ...
- $\ast\,$  Cooling :  $\mu {\rm channels},$  new heat conducting materials, ...
- Many activities would win from exchanges with industry  $\rightarrow$  spin-offs (?)

### **Sensor Embedding**

### SEnsor Row Neatly Wrapped In Extra-Thin Envelope -> SERNWIETE

### Rationale

- Set rid of the wire bonds (less material)
- ✤ Provide a mechanical protection to sensors
  - allows thinner sensors
  - Allows more mechanical stress by evening it
- School Possibilities
  - Lower material budget (average ~ cross section)
    - □ Expected material budget <~ 0.15 % Xo
  - Support less
  - cover non planar surface



Idea from R. De Oliveira, W.Dulinski

