

ALICE SILICON TRACKER UPGRADE

G. Contin – Universita` di Trieste & INFN Trieste for the ALICE Collaboration

2 Summary

- The present ALICE Inner Tracking System
- ALICE Silicon Tracker Upgrade motivations
- Detector requirements
- Technology implementation
 - Hybrid Pixel Detectors
 - Monolithic Pixel Detectors
 - Strip Detectors
- Conclusions

The ALICE experiment

3

Dedicated heavy ion experiment at LHC

- Pb-Pb collisions: Study of the behavior of strongly interacting matter under extreme conditions of energy density and temperature
- Proton-proton collisions: Reference for heavy-ion program and strong interaction measurements complementary to other LHC experiments

Barrel Tracking requirements

- Pseudo-rapidity coverage |η| < 0.9</p>
- Robust tracking for heavy ion environment
 - Mainly 3D hits and up to 150 points along the tracks
- Wide transverse momentum range (100 MeV/c - 100 GeV/c)
 - Low material budget (13% X₀ for ITS+TPC)
 - Large lever arm to guarantee good tracking resolution at high pt

PID over a wide momentum range

 Combined PID based on several techniques: dE/dx, TOF, transition and Cherenkov radiation

ALICE ITS Upgrade - G. Contin

The present Inner Tracking System

4

The ITS tasks in ALICE

- Secondary vertex reconstruction (c, b decays)
 - Good track impact parameter resolution < 60 μ m ($r\varphi$) for p_t > 1 GeV/c in Pb
- Improve primary vertex reconstruction, momentum and angle resolution of tracks
- Tracking and PID of low pt particles
- Prompt L0 trigger capability <800 ns (Pixel)</p>

Detector characteristics

- Capability to handle high particle density
- Good spatial precision (12–35 μ m in $r\phi$)
- High granularity (\approx few % occupancy)
- Small distance of innermost layer from beam axis (mean radius ≈ 3.9 cm)
- Limited material budget (7.2% X₀)
- Analogue information in 4 layers (Drift and Strip) for particle identification

ITS: 3 different silicon detector technologies

Physics Motivations for the Upgrade

- Quark mass dependence of in-medium energy loss
- Thermalization of heavy quarks in the medium

Motivations

physics goals

Design goals

- Improve the charmed baryonic sector studies
- Access the exclusive measurement of beauty hadrons
 - Reconstruct displaced decay vertices
 - Track charged particles with high resolution at all momenta
 - Identify charged particles down to low transverse momentum
 - Implement a topological trigger functionality

From Design Goals

to Detector Requirements

Impact parameter resolution improvement by a factor 3

- Distance from interaction vertex
- Material budget
- Spatial precision

Standalone tracking efficiency and transverse momentum resolution

- Granularity
 - Radial extension
 - Layer grouping

- Pixel cell size reduction for inner layers
 - Strip cell size reduction for intermediate radii

Geometry and technology

for innermost layers

- Position of the outermost layers
- Experimental environment: 685 krad, 80 part/cm²
 - Radiation hardness, granularity Technology for innermost layers
- □ Interaction rates: 50 kHz in Pb-Pb, 2 MHz in pp
 - Fast readout
- Particle identification capability
- Expected detector lifetime
 - Detector accessibility and modularity Layout, supports, services

ALICE ITS Upgrade - G. Contin 26/03/2012

Readout architecture

ITS Upgrade geometry

- 7
- **Beam pipe** outer radius reduced to 19.8 mm, wall thickness to 0.5 mm
- **First detection layer** close to the beam pipe: $r_1 = 22 \text{ mm}$
- Increase radial extension 22-430 mm
 - Increasing the outermost radius to 500 mm results in a 10% improvement in transverse momentum resolution
- Layers are grouped: (1,2,3) (4,5) (6,7)
- \neg **η coverage**: ±1.22 over 90% of luminous region $\rightarrow z$ dimension

Layer	Radius [cm]	+/- z
1	2.2	11.2
2	2.8	12.1
3	3.6	13.4
4	20	39.0
5	22	41.8
6	41	71.2
7	43	74.3

How Detector Requirements drive Technology Choices

Targets for Inner Layers (1, 2, 3)

- $r \phi \& z$ spatial precision: 4 μm
 - **D** Pixel size $(r\phi, z)$: 20-30, 20-50 μ m
- Material budget per layer: 0.3-0.5% X₀
 - 0.1% X₀ under study for Layer 1
- Radiation env: 685 krad / 10¹³ n_{eq} per year
- Granularity: 80 cm⁻² particle density

Targets for Outer Layers (4, 5, 6, 7)

- \Box $r\phi$ spatial precision: < 20 μ m
 - Larger pixel size
 - Strip pitch 95 μm, stereo angle 35 mrad
- Material budget per layer: 0.5-0.8% X₀
- Radiation env: 10 krad/3*10¹¹
 n_{eq} per year
- □ Granularity: 1 cm⁻² particle density
- \Box Low cost per m²

A. 7 layers of monolithic pixel detectors

- Better standalone tracking efficiency and transverse momentum resolution
- Worse PID or no PID
- B. 3 innermost layers of hybrid pixel + 4 layers of micro strip detectors

Features:

- Made significant progress, soon to be installed in STAR
- All-in-one, detector-connection-readout
- \blacksquare Sensing layer (moderate resistivity ${\sim}1~k\Omega cm$ epitaxial layer) included in the CMOS chip
- Charge collection mostly by diffusion (MAPS), but some development based on charge collection by drift
- Small pixel size: 20 μm x 20 μm target size
- Small material budget: 0.3% X₀ per layer
- To be evaluated
 - Radiation tolerance

Options under study:MIMOSA

- INMAPS
- LePIX

Monolithic: MIMOSA (IPHC)

- CMOS sensors with rolling-shutter readout architecture
- MIMOSA series for STAR
 - Continuous charge collection (mostly by diffusion) inside the pixel
 - Charge collection time ~200 ns
 - Pixel matrix read periodically row by row: column parallel readout with end of column discriminators
 - Integration time \equiv readout period ~100 μ s
 - Low power consumption (150-250 mW/cm²): one row is powered at time
 - Pixel size 20 μm
 - \blacksquare Total material budget x \sim 0.3% $\rm X_{0}$
 - 0.35 μm technology node

ULTIMATE sensor for STAR HFT

Monolithic: MIMOSA - 2

12

MISTRAL development for ALICE

- 0.18 μm technology node
 - Radiation tolerance improvement by factor 10x
- Double-sided readout
 - Reduction of integration time down to 20-40 µs target
 - Double power consumption (more columns active at the same time)
 - Target power dissipation: < 250 mW / cm²

Submitted prototypes

- MIMOSA32 (delivered), MonaliceT1 test chip.
 - Evaluation of the technology
 - detection efficiency, S/N, quadrupole-well
 - Test of radiation hardness, SEU sensitivity

Monolithics: INMAPS (RAL/Tower Jazz)

13

- In-pixel signal processing using an extension (deep p-well) of a triple-well 0.18 μm CMOS process developed by RAL with TowerJazz (technology owner)
 - Standard CMOS with additional deep p-well implant
 - 100% efficiency and CMOS electronics in the pixel
 - Size limitation: 30 μ m x 30 μ m in 0.18 μ m
 - Power saving: matrix read only upon trigger request
 - further improvement with sparsified r.o.
 - Charge collection by diffusion
 - 18 μm detection thickness
 - 100 e⁻ minimum signal
 - good S/N with low sensor capacitance
- New development dedicated to ITS upgrade started in 2012 (Daresbury, RAL - ARACHNID Collaboration)
 - Verify radiation resistance for innermost layers
 - Reduce power consumption exploiting detector duty cycle (5% for 50 kHz int. rate)
 - Develop fast readout

- Monolithic pixel detectors integrating readout and detecting elements with:
 - 90 nm CMOS technology
 - Moderate resistivity wafers
- □ Low power consumption (target $< 30 \text{mW} / \text{cm}^2$)
- Large depletion region (tens of μm)
- Fast processing: full matrix readout at 40MHz
- Moderate bias voltage (< 100 V)
- Charge collected by drift
 - Reduce irradiation bulk damage
 - Control charge sharing
 - Improve charge collection speed
 - Tests on standard resistivity prototypes
 - □ Large breakdown voltage (>30 V) \rightarrow 50 µm depletion is achievable
 - □ Small collection capacitance (<1 fF) \rightarrow high S/N, small power consumption
 - Qualification for radiation hardness

- Large Signal-to-Noise ratio
 - PID with large depletion region

State of the art in LHC experiments electronics chip CMOS chip + high resistivity (~80 k Ω cm) sensor Targets: $50 \,\mu\text{m} + 100 \,\mu\text{m}$ thickness metal Material budget $x/X_0 < 0.5\%$ insulator Charge collection by drift depletion High S/N ratio: ~ 8000 e-h pairs/MIP \Rightarrow S/N > 50 zone sensor Connections via bump bonding particle track Sensor **Bump dimensions** Limiting the pixel size to 30 μ m x 30 μ m High cost with fine-pitch ASIC Limiting the application to larger surfaces

bump

diode --implant

Bias voltage electrode

doped silicon

Kapton-Al Cable

ALICE ITS Upgrade - G. Contin 26/03/2012

 \Box Sensor thinning to 100 μm

view on module side before carrier chip release:

Sensor 100 μm , readout chip 50 μm , glass carrier 300 μm

Edgeless detectors

- Introduce a highly n-doped trench
- Reduce the dead region
 - from \sim 600 μ m to \sim 20 μ m
- Back-side removal for bumping
- Low-cost bump bonding

- Sensor design based on current ALICE SSD
 - Standard 300 μm double-sided micro-strip sensors (7.5 cm x 4.2 cm)
 - 35 mrad stereo-angle between p- and n-side strips
- Reduced strip length down to 20 mm
 - Half cell-size: 95 μm x 20 mm
 - Higher granularity
 - >95% ghost hit rejection efficiency

Drawbacks

occupancy: - 50% > ambiguity resolution < capacitive noise > S/N ratio ~ spatial resolution < 2 × power consumption

- Challenging interconnections
- Increased power consumption

Strip detector development

18

Interconnection cables R&D

- Micro-cables in aluminum-polyimide
- Thickness: 10 μm + 10 μm
- Pitch: 42.5-44.5 μm (chip) / 47.5 μm (sensor)
- Length: $\sim 25 \text{ mm} / \sim 50 \text{ mm}$

Assembly and folding

- TAB bonding technique:
 - Allows chip tests, less material, safe folding
 - Challenging at pitch < 50 μm</p>
- Bonding test on dummy components
- Compact module layout

ASIC development

- 0.18 µm technology (rad. hard)
- 400 e⁻ noise (5 pF load)
- Low power and fast ADC (10 bits)
- Provide dE/dx over 20 MIP range with 0.1 MIP resolution

 μ -chip

SSD sensor

ALICE ITS Upgrade - G. Contin 26/03/2012

Hybrid

Support structure design

Complete accessibility

- ❑ Maximum modularity
- Minimum material

19

- Inner barrel: 3 layers of pixels
 - 3-layer structure equipped held on carbon fiber wheels
 - Independent staves for testing/characterization
- Outer barrel: 4-layer structure
 - 4 pixel/strip layers mounted on 2 barrels
 - 3 tubes of carbon composite or beryllium, fixed between the two structures to provide rigidity and support/guide the inner part insertion

Inner layer stave material budget

Component	Material budget X/X ₀ %	Notes
Support Structure	0.07 – 0.22	carbon foam or polyimide or silicon
Glue	0.045	2 layers of glue 100 μm thick each
Pixel module	0.053 – 0.16	Monolythic (50 μ m) – hybrid (150 μ m)
Flex bus	0.15	single layer flex bus
Total	0.32 – 0.58	

ldea for an ultra-light innermost layer

20

- Very light structure with almost no material (only silicon) in the active area
- Very light stave without glue layers, electrical bus, etc.
 - Large silicon structures integrating the electrical bus for signal and power distribution
 - Stitching fabrication process
- No overlap to simplify the geometry
- Air cooling to avoid the extra material

Layer 0 mechanical structure

ALICE ITS Upgrade - G. Contin 26/03/2012

 $X/X_0 \simeq 0.1\%$

- The ALICE Silicon Tracker Upgrade is required to study:
 - Quark mass dependence of in-medium energy loss
 - Thermalization of heavy quarks in the medium
- New Tracker composed of 7 silicon layers characterized by:
 - Impact parameter resolution improved by factor 3x
 - First detecting layer @20 mm from the beam line
 - Material budget $x/X_0 \sim 0.3-0.5$ % in the first layers
 - High spatial precision (~ 4 μ m in the first layers)
 - Very high standalone tracking efficiency down to low p_t (> 95% for p_t > 200 MeV/c)
 - PID capability
 - Fast access for maintenance
- Detector technologies considered for the Upgrade
 - Monolithic Pixel Detectors
 - Hybrid Pixel Detectors
 - Micro-Strip Detectors
- Low material budget supports allowing access and repair
- To be built and installed by 2019!!!

The present ITS parameters

Layer	Det	Radius (cm)	Length (cm)	Surface (m2)	Chan.	Spo prec (n	atial cision 1m)	l m Cell (μm2) z	Cell Occupancy (µm2) central PbPb (%)	Material Budget (% X/X ₀)	Power dissipation (W)	
						rφ	z				barrel	end-cap
1	CUUS	3.9	28.2	0.21	9.8M	12 1	100	50x425	2.1	1.14	1.35k	30
2 SPD	SPD	7.6	28.2						0.6	1.14		
3	CDD	15.0	44.4	1.31	133 K	35	25	202x294	2.5	1.13	- 1.06k	1.75k
4 SDD	SDD	23.9	59.4						1.0	1.26		
5	CCD	38.0	86.2	5.0	2.6M	20	830	95x40000	4.0	0.83	- 850	1.15k
6	6 SSD	43.0	97.8	5.0					3.3	0.86		

Improvement of impact parameter resolution & tracking efficiency

24

HYBRID PIXELS (state-of-the-art) and comparison with MAPS

Simulations for two upgrade layouts

Layout 1: "All New" – Pixels (7 pixel layers)

Resolutions:

•

- $\sigma_{r\phi}$ = 4 μ m, σ_z = 4 μ m for all layers
- Material budget: $X/X_0 = 0.3\%$ for all layers

Layout 2: Pixel/Strips (3 layers of pixels + 4 layers of strips)

Resolutions:

 $\sigma_{r\phi} = 12 \,\mu m$, $\sigma_z = 12 \,\mu m$ for pixels X/X₀ = 0.5% for pixels

Material budget: X/X

radial positions (cm): 2.2, 2.8, 3.6, 20, 22, 41, 43

Same for both layouts

 $\sigma_{r\phi}$ = 20 μ m, σ_z = 830 μ m for strips X/X₀ = 0.83% for strips

Z	4	e	2	

	Monolithic Pixels	Hybrid Pixels	Strips
Silicon Sensor	-	0.11% X ₀ (100 um)	0.40% X ₀
Silicon ASIC	0.05% X ₀ (50 um)	$0.05\%~X_0$ (50 um)	0.15% X ₀
Other components	0.25% X ₀	0.25% X ₀	0.28% X ₀
Min. Target	0.30% X ₀	0.41% X ₀	0.83% X ₀

ITS PID performance

26

A Pion to kaon separation (black circles) and proton to kaon separation (red triangles) in unit of sigma in the case of 4 layers of 300 µm (left panel), 7 layers of 15 µm (central panel) and 4 layers of 100 µm + 3 layers of 300 µm (right panel) silicon detectors. The horizontal lines correspond to a 3 sigma separation.