

Current CMS Tracker

Tracker

- Barrel & Endcap geometry
- •200 m² of silicon
- •15.000 detector modules with 25.000 sensors
- •Operating temperature < -10° C
- •Expected fluence (10 years) 1x10¹⁴ 1 MeV Neutron/cm²

Sensors

- •6" wafers, high resistivity FZ <100>
 - 500 μm thickness: 3.5–7.5 kΩcm
 - 320 μm thickness: 1.5–3.0 kΩcm
- p-on-n processing
- AC coupled strips
- PolySilicon resistor biasing
- •Strip length ~10 cm
- •15 different sensor geometries ≈ 10x10 cm² (rectangular and wedge shaped)

New CMS Tracker

- Performance of current tracker will have degraded significantly due to radiation damage by 2020
- Luminosity upgrade of the LHC
 - High-Luminosity-LHC = 5 x LHC
- Installation of the new tracker: 2020-2022
- Two main challenges for the CMS Tracker
 - Even harsher radiation environment
 - Provide tracker information to the first level trigger

Challenges for the Upgrade: Radiation

- Radiation dose is about 5 –
 10 times higher than in current tracker
- Detector has to survive 10 years of operation
- Todays sensor technology might be sufficiently radiation tolerant for outermost layers
- For intermediate to inner layers we have a number of possible candidate materials/technologies
- Innermost layers might even require something new?

Expected fluence (10 years)

- Outermost layer (110 cm)
 ~ 1x10¹⁴ 1 MeV Neutrons/cm²
- Innermost layer (20 cm)
 ~ 1x10¹⁵ 1 MeV Neutrons/cm²

Challenges for the Upgrade: Trigger

- Cannot send full tracker information to the trigger due to bandwidth limitation
- Send hits from particles with high momentum to the trigger
- Estimate particle momentum on module level
 - At given magnetic field the track curvature depends on the particle's p_t
 - Different curvature results in different incident angles at a given radius
 - Estimate incident angle from hit displacement over a short distance
 - → two parallel sensor planes

New Modules

- 2S: Module with two strip sensors
 - 2 x AC coupled strip sensor with polysilicon biasing
 - 90 micron pitch
 - 10 x 10 cm size (6" wafers)
 - 2 x 1016 strips per sensor = 4064 Channels per module
- PS: Module with one strip and one pixel sensor
 - 1 x AC coupled strip sensors with polysilicon biasing
 - 100 micron pitch
 - 1 x DC coupled macro-pixel sensors with polysilicon or punch trough biasing
 - long pixels/short strips ~ 1-2 mm length
 - 10 x 4 cm size (6" wafers)
 - 32.768 pixels + 2032 strips

Barrel + End-cap layout

From S. Mersi, 30.January 2012

→ ≈ 240 m² of silicon

25 modules outside

z info in trigger θ info in trigger PS modules inside 2 for measurement +1 for redundancy

NEW SENSORS

Sensors: Bulk Materials

- Different radiation tolerant bulk materials are potential candidates
- We might use one or several materials optimised to different radii from the interaction point
 - Radiation higher towards center
 - Sensor area increases towards outside
- → Cheaper "standard" materials in outer reagion, more radiation tolerant materials inside

Sensors: Bulk Materials

 CMS Tracker has a large campaign on-going investigating radiation tolerant materials and production processes using test sensors and structures

	physical thickness		deep diffusion		carrier wafer		
active thickness	320µ	200µ	200µ	120µ	120µ	100µ	50µ
FZ	X	X	X	X	Χ		
MCz		X					
Epi						X	X

Sensors: Processing

We investigate 3 processes (on all materials):

- p-on-n: p-strips in n-bulk
- n-on-p, p-stop: n-strips in p-bulk with p-stop isolation
- n-on-p, p-spray: n-strips in p-bulk with p-spray isolation

We will need:

- AC coupled strip sensors (single-sided) with polysilicon biasing
- DC coupled macro-pixel sensors with polysilicon or punch through biasing

Sensors: Important Characteristics

- HV operation
 - Long-term stable operation up to 500 V
 - Even after irradiation!
- Low reverse bias current
 - $< 1 \,\mu\text{A}@400\text{V}@20^{\circ} \,\,\text{C} \,(\sim < 1 \,\mu\text{A/cm}^3)$ for 10 x10 cm² area, 320 μ m thickness
- High quality dielectric between aluminium readout strip strip implant
 - Low count of pinholes (short between alu implant) < ‰ of strips
 - Breakthrough voltage of dielectric > 150 V
- Stable production line
 - Changes in the production might influence the required quality and radiation hardness
 - Even small changes can have unexpected effects

Sensors: Electrical Characterisation

Measurements on dedicated test structures to assess the quality of production process

- Diode Properties
 - Full depletion voltage (V_{depl} from CV-curve)
 - Reverse bias current (I_{leak} from IV-curve)
- Strip Properties
 - Interstrip resistance: R_{int}
 - Interstrip capacitane: C_{int}
- Oxide Properties (dielectric between strip implant and readout strip)
 - Coupling capacitance (oxide thickness): C_{ox}
 - Dielectric current, breakthrough voltage: I_{diel}, V_{break}
 - Flatband voltage (MOS, GCD): V_{fb}
 - Surface current (GCD): I_{surf}
- Sheet Resistances
 - Polysilicon: R_{poly}
 - Implants: R_{strip}, R_{stop}
 - Alu: R_{alu}

Sensors: Electrical Characterisation

Measurements on sensor to assess the quality of sensors on a sample basis

- Global Measurements
 - Full depletion voltage (V_{depl} from CV-curve)
 - Reverse bias current (I_{leak} from IV-curve)
- Strip Properties
 - Interstrip resistance: R_{int}
 - Interstrip capacitane: C_{int}
 - Coupling capacitance: C_{ox}
 - Polysilicon resistor: R_{poly}
 - Pinholes (current through dielectric)

MODULE COMPONENTS

2S Modules: Electronics

Hybrid

- 2 x 8 readout chips with 254 channels each
- Chips are bump bonded to hybrid
- Communicate with neighbour chip and concentrator chip
- Each chip connects to strips on top and bottom sensor via wire bonding from hybrid
- → Lightweight hybrid board needs multiple layers with high density interconnects and bump and wire bonding capability

Service board

- Might be an additional board or integrated with hybrid
- Houses DC-DC converter, optical link and the corresponding connectors
- Lightweight connectors for low voltage, high voltage and optical data link

2S Modules: Chip to Sensor Connections

2S Modules: Support and Cooling

- Stiff and lightweight support materials (CFRP)
- Thin heat spreader material for thermal management
- Radiation tolerant glue with good thermal conductivity

