

Role of CF4 in gas amplification in gems

Ankit D. Mohapatra Tania Moulik National Institute of Science Education and Research, India

(For Gems for CMS collaboration)

Outline

 \triangleright A bit of discussion on CF₄ \triangleright Gain in case of single gems for CF₄ mixtures \blacktriangleright Loss rates in case of single gems

Gain in **triple gem** and comparison with data

The Gas called "CF₄"

- \triangleright A Fast gas because of large electron scattering cross-section > 0.5 eV. This lowers the energy of the electrons in the mixture to less than 0.5 eV . (Effectively acting like a pillow rather than a hard surface)
- At this energy the cross-section is less in case of Argon.
- \triangleright Hence the mean free path is large, and so an increase in drift velocity over a range of E/p values.

The Gas called "CF₄"

- **► 4 fundamental vibrational modes**
	- Symmetric stretch (0.112 eV), symmetric bend (0.054 eV)
	- Asymmetric stretch, (0.157 eV) Asymmetric bend (0.078 eV)
	- Studies have revealed strong vibrational excitation by electron impact below 2.0 eV. (We know it is a fast gas !)
- \triangleright Excitation energy of asymmetric stretch very near the Ramseur minimum in momentum and electron scattering crosssection at 0.16 eV.

Attachment in CF_4

- \triangleright Resonant electron attachment to CF₄ occurs mainly in 6-8 eV via two negative ion states.
- \triangleright Ground state of CF₄ at 6.8 eV producing F and CF_3 via complementary channels.

First electronically excited state of CF_4^* at 7.6 eV producing only F⁻.

$$
CF_4^*^- \to F^- + CF_3^*
$$

 \triangleright An interesting thing to note is that CF₄⁻ not observed in gas phase as, only seen in van der waals clusters of CF_4 , where $CF_4^*^- \rightarrow F^- + CF_3^*$
An interesting thing to no
not observed in gas phas
van der waals clusters of
auto-detachment is slow.

Dissociative Ionisation – dominant in CF_4 above 30-35 eV.

A look at the partial ionization cross section For production of CF_3^+ and other radicals !

> **Clearly CF³ ⁺ cross-sections are a factor of ~ 10 greater.**

> > LG Christophorou et al, J. Phys. Chem. Ref. Data Vol 25, No-5, 1996

RD-51 mini week, November 2011

- \triangleright The threshold for generating neutral fragments is about 12.5 eV.
- \triangleright This value being lower than the ionization potential of CF_4 (16.2 eV), neutral dissociation dominant at low electron energies.
- At energies below neutral dissociation threshold, dissociation occurs via electron attachment.
- \triangleright So

Penning transfer?

- \triangleright Looks unlikely from the preceding discussion.
	- High ionization energy of **16.2** eV, which is also higher than the ionization energy of Argon !
	- \triangleright Hopefully no penning transfer from Ar to CF₄.
	- \triangleright No stable excited state of CF₄
	- \triangleright So penning transfer from CF₄ to CO₂ unlikely

Any data for CF_4 in single gems?

 \triangleright As a conclusion, we can take home the fact that gain should be lower in case of CF_4 mixture

Single gem plots $(Ar(45)/CO₂(15)/CF₄(40))$

 \triangleright The effective gain in case of single gem for Ar/ CO_{2}/\overline{CF}_{4} mixture is shown for varying gem potentials and penning parameters.

- \triangleright The parameters in simulation being
	- Drift field 2 kV/cm
	- \blacktriangleright Induction field 3 kV/cm
	- \triangleright Drift /induction space 3/2 mm

Comparison of effective gains

The value of gain in $Ar/CO₂/CF₄$ is compared with $Ar(70)/CO₂(30)$ (which compares well with the data) \triangleright The penning parameter chosen is 0.6.

> **Clearly one can see a reduction of in gain in case of CF⁴ mixture**

\triangleright Possible reasons

- \triangleright Less Argon would mean less ionization electrons and less $CO₂$ which would mean less penning transfer.
- Also presence of both $CO₂$ and $CF₄$ would lead to an increase in attachment loss.

 \triangleright The loss rate plots for both the primary and secondary electrons are shown as :

- Attachment loss rate
- Geometric loss rate
- Overall loss rate

 \triangleright The values of the loss rate are compared with $Ar/CO₂$ mixture.

Ar/CO²

Ar/CO² /CF⁴

A much higher value seen in CF_4 mixture (About a factor of 6-7 higher)

 $Ar/CO₂$ **Ar/CO₂**

Attachment rate for secondary electrons higher in case of CF_4 mixture.

• Plotting the electron endpoints in the gem, gives us a good picture of the geometric loss in gems.

X-Y profile 3-D plot

So how fast?

 \triangleright Plotting the time taken by the electrons to reach the anode in case of $Ar/CO₂$ and comparing the result with $Ar/CO_2/CF_4$ should give an indication.

We fit it with a Gaussian function to get an estimate of the time resolution !

Triple gem

 The gap for the triple gem were :

Drift space : 3 mm Transfer-1 space : 1 mm \triangleright Transfer-2 space : 2 mm \triangleright Induction space : 1 mm

 \triangleright The value of the various fields and potentials were taken from the group. Gas mixture was $Ar(45)/CO₂(15)/CF₄(40)$

Ñ

Ñ

However we divided the triple gem into three separate single gems, and then multiplied the gain in these three single gems to get the total gain

 $G_{\text{Total}} = G_1 \times G_2 \times G_3$

1 layer Cu tape 2 layer Cu tape

• The simulated gain seems to be in good agreement with the experimental gain. (Laura/ Michal/Andrey)

- The simulated gain matches quite well for penning parameter of 0.60.
- The transfer rate is 0.55 for 15 % $CO₂$ from Ozkan's paper. So we are in good shape! (No role played by CF_4 in penning transfer)

BUT…

- However when we simulate the gain in a triple gem structure, we are off-track !
- As an example, for HV supply of 4200, we get a value of \sim 1000 which is less compared to the experimental value of $~1$ $~3000$.
- Hopefully, we will get it sorted out !

Dangers of Using CF₄

- \triangleright CF₄ is an active source of reactive neutral and ionic fragment atoms and molecules (especially neutral **F** atoms)
- Neutral F atoms are active species in etching process.
- Hopefully they don't eat the detector !

Cross-section for production of fluorine on impact of electron with CF⁴

> LG Christophorou et al, J. Phys. Chem. Ref. Data Vol 25, No-5, 1996 RD-51 mini week, November 2011

However …

Produce enough fluorine to damage the detector that fast !

10 years

I would like to thank Rob Veenhof, Heinrich Schindler,Tania Moulik and Stefano Colafranceschi for their help

I would also like to thank RD51 for their support