Ion backdrift studies

Klaus Zenker

RD51 Mini Week

23.11.2011

Motivation Particles in fields ILC

lon suppression How-to Simulation Experiment

Conclusion

Time Projection Chamber

Figure: Principle of a TPC by Oliver Schäfer

Drift of particles

$$m\frac{d\overrightarrow{v}}{dt} = e\overrightarrow{E} + e\left(\overrightarrow{v}\times\overrightarrow{B}\right) + \overrightarrow{Q}(t)$$

• $\vec{Q}(t)$ denotes a noise term connected to stochastic scattering with gas molecules

• stationary solution $(\overrightarrow{v_{\rm D}} = \langle \overrightarrow{v} \rangle; t \gg \tau)$:

$$0 = \left\langle m \frac{d \overrightarrow{v}}{dt} \right\rangle = e \overrightarrow{E} + e \left(\overrightarrow{v_{\rm D}} \times \overrightarrow{B} \right) - \frac{m}{\tau} \overrightarrow{v_{\rm D}}$$

Drift of particles

$$m\frac{d\overrightarrow{v}}{dt} = e\overrightarrow{E} + e\left(\overrightarrow{v}\times\overrightarrow{B}\right) + \overrightarrow{Q}(t)$$

• $\overrightarrow{Q}(t)$ denotes a noise term connected to stochastic scattering with gas molecules

► stationary solution
$$(\overrightarrow{v_{\rm D}} = \langle \overrightarrow{v} \rangle; t \gg \tau)$$
:

$$0 = \left\langle m \frac{d \, \overrightarrow{v}}{dt} \right\rangle = e \, \overrightarrow{E} + e \left(\overrightarrow{v_{\rm D}} \times \overrightarrow{B} \right) - \frac{m}{\tau} \overrightarrow{v_{\rm D}}$$

• using
$$\omega = Be/m$$
 and $\mu = \tau e/m$:

drift velocity

$$\overrightarrow{v_{\rm D}} = \frac{\mu E}{1 + \omega^2 \tau^2} (\underbrace{\overrightarrow{e_E}}_{\rm ion} + \omega \tau \overrightarrow{e_E} \times \overrightarrow{e_B} + \underbrace{\omega^2 \tau^2 \left(\overrightarrow{e_E} \cdot \overrightarrow{e_B}\right) \overrightarrow{e_B}}_{e^- (\text{if } B \neq 0)})$$

lons vs. electrons l

Typical values:

	ion	electron
μ	$\approx 1.5{\rm cm^2/Vs}$	$pprox 10^4{ m cm}^2/{ m Vs}$
$\overrightarrow{v_{\mathrm{D}}}$	$\approx 3.75\mathrm{m/s}$	$\approx 2.5 \mathrm{cm}/\mathrm{\mu s}$ $@ \overrightarrow{E} = 250 \mathrm{V/cm}$

Gas Properties of TDR gas

[http://www-hep.phys.saga-u.ac.jp/ILC-TPC/gas/]

ILC

Figure: ILC baseline design [ILC-REPORT-2007-001]

lons vs. electrons II

Typical values:

	ion	electron
μ	$\approx 1.5{\rm cm^2/Vs}$	$pprox 10^4{ m cm}^2/{ m Vs}$
$\overrightarrow{v_{\mathrm{D}}}$	$\approx 3.75\mathrm{m/s}$	$\approx 2.5 \mathrm{cm}/\mathrm{\mu s}$ $@ \overrightarrow{E} = 250 \mathrm{V/cm}$

lon discs

Distance passed by the ion disc per bunch crossing:

 $x_{\rm disc} = 0.199 \, {\rm s} \cdot 3.75 \, {\rm m/s} = 74.6 \, {\rm cm}$

ILD TPC drift region: 2.25 m

- there will be three discs in the ILD TPC
- they are produced in the amplification stage of the TPC
- in addition there are also the ions produced in the TPC drift volume

lon production in detail

Primary ions:

- primary ions are spread over the entire GEM hole diameter
- ionization takes place in the complete hole cross section
- ▶ ions $([\omega\tau]^{e^-} \gg [\omega\tau]^{ion})$ follow the electric field lines
- ▶ \Rightarrow intrinsic ion suppression (extraction efficiency $X_{\text{prim.}}$)

lon production in detail

Primary ions:

- primary ions are spread over the entire GEM hole diameter
- ionization takes place in the complete hole cross section
- ▶ ions $\left([\omega \tau]^{e^-} \gg [\omega \tau]^{ion} \right)$ follow the electric field lines

► \Rightarrow intrinsic ion suppression (extraction efficiency $X_{\text{prim.}}$) Secondary ions:

- ► ⇒ primary ions reaching a second GEM are in that case secondary ions
- following the electric field lines they go through the center of the GEM hole
- diffusion is negligible
- extraction efficiency:

$$X_{
m sec.}^{
m top} = egin{cases} rac{X_{
m prim.}^{
m top}}{X_{
m prim.}^{
m bottom}} & {
m for} \; X_{
m prim}^{
m top} < X_{
m prim}^{
m bottom} \ 1 & {
m for} \; X_{
m prim}^{
m top} > X_{
m prim}^{
m bottom} \end{cases}$$

How to suppress ions?

- anode
- cathode
- ► amplification GEMs
- gating GEM
- ionizing particle

1. clean ions between 2 trains

- $\Rightarrow\,$ requires a high ion velocity ($\overrightarrow{\nu_{\rm D}}{}^{\rm ion} > 12\,{\rm m/s})$
 - since a high drift field is not wanted: $\mu^{\rm ion}>4\,{\rm cm^2/Vs}$
- to achieve this one could use a different gas mixture
- 2. gate ions in front of amplification volume
 - 2.1. wire gate
 - gate after each bunch train
 - possibly leads to field distortions
 - 2.2. GEM gate
 - coninuous ion supression

lons produced in the drift area can not be reduced

GEM properties

Motivation

Particles in fields ILC

Ion suppression How-to Simulation Experiment

Conclusion

GEM geometry

CERN GEM:

double conical holes

- Figure: GEM foil [http://gdd.web.cern.ch/GDD/]
- ▶ kapton (50 μ m) enclosed by copper surface (5 μ m)
- ▶ $r = 25 \, \mu m$, $R = 35 \, \mu m$
- pitch $p = 140 \, \mu \mathrm{m}$
- optical transparency $\tau_{\text{opt.}} = \frac{A_{\text{hex.}}}{A_{\text{circ.}}} = \frac{2\pi R^2}{\sqrt{3}p^2} = 22.6 \%$

1. Field simulation:

- 3D model of the GEM stack
- software using finite element methods are used to calculate potential
- ► CST Studio Suite[™]
 - eight-node cubic basic elements
 - material is merged with the PBA[®] algorithm

► ANSYS[®]

- ten-node tetrahedral basic elements
- each element is filled with one material

- 2. Electron/lon drift:
 - ► Garfield++
 - treats ionization processes and the ion/electron transport
 - electron transparency and ion back drift can be calculated

Initial Problems:

- Ansys
 - no FLC license for ANSYS
 - I have no rights to work on lxplus (CERN)

 there is no interface for CST in Garfield++

- 2. Electron/lon drift:
 - ► Garfield++
 - treats ionization processes and the ion/electron transport
 - electron transparency and ion back drift can be calculated

✓ Initial Problems:

- Ansys
 - I found a group with an ANSYS license
 - I should get access to lxplus soon

 interface was written and works

CST interface to Garfield++

$$E_{x} = -\frac{\partial \Phi}{\partial x} = -\frac{\partial \left(\sum_{k} N_{k} \Phi_{k}\right)}{\partial (\xi, \mu, \eta)} \frac{\partial (\xi, \mu, \eta)}{\partial x}; \quad J^{-1} = \frac{\partial (\xi, \mu, \eta)}{\partial (x, y, z)}$$

Garfield++ interface at work

Garfield++: e⁻ crossing a single GEM (TDR gas) CST: ANSYS:

- $E_{\rm drift} = 250 \, {\rm V/cm}$
- $E_{\rm induction} = 6000 \, {\rm V/cm}$
- $U_{\text{GEM}} = 300 \,\text{V}$

- ► $E_{\rm drift} = 600 \, {\rm V/cm}$
- $E_{\text{induction}} = 2000 \, \text{V/cm}$
- ► $U_{\text{GEM}} = 300 \,\text{V}$

How-to Simulation Experiment

First look (CST)

Experiment

Figure: Small TPC [DESY-THESIS-10-015]

cathode

The DESY Small Prototype is being used.

- diameter of 25 cm
 ⁵⁵Fe source on top of the
- drift length of 20 mm

Two type of GEMs will be considered in the beginning:

- standard CERN GEMs ($R = 35 \, \mu \mathrm{m}$, $\tau_{\mathrm{opt.}} = 0.23$)
- modified CERN GEMs ($R = 50 \,\mu \text{m}$, $\tau_{\text{opt.}} = 0.46$)

After commissioning stacks of two same type GEMs, a stack of three GEMs will be used.

In addition, we contemplate to measure the currents in the system to prove the ion suppression.

Experimental setup

voltage divider

Experimental setup

Calibration of the preamplifier (PA) with a charge injector

Results: Measurement of a Fe⁵⁵ source spectrum

Comparison of the effective double GEM gain

Conclusion

Simulation:

- simulation with two different FEM software was prepared
- ► Garfield++ interface can be improved
- detailed study of ion back drift has started
 - minimize the ion back drift
 - keep electron transparency high

Conclusion

Simulation:

- simulation with two different FEM software was prepared
- ► Garfield++ interface can be improved
- detailed study of ion back drift has started
 - minimize the ion back drift
 - keep electron transparency high

Experiment:

- commissioning of the small prototype not yet complete
- first results look promising
- after commissioning is finished:
 - compare effective double GEM gain of standard CERN GEMs with other GEMs (smaller hole radius 50 µm)
 - compare these results with simulation
 - build triple GEM stack in the small prototype with minimized ion back drift
 - measure the ion back drift

Backup

Mesh view for single GEM in CST

Туре

ANSYS vs. CST (preliminary)

Frist look (ANSYS, different backdrift definition)

