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Figure: Principle of a TPC by Oliver Schafer
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Drift of particles

dv — - =
m—:eE+e(v x B

dt ) + Q)

—
» Q(t) denotes a noise term connected to stochastic scattering
with gas molecules

» stationary solution (vp = <7>; t>71):

dv — - = m_,
0=(m— :eE—i—e(vaB)—?vD
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Drift of particles

dv — - =
m—:eE+e(v x B

dt ) + Q)

—
» Q(t) denotes a noise term connected to stochastic scattering
with gas molecules

» using w = Be/m and u = T1e/m:

drift velocity
— nE

B = s (@ e x @ + o2 (@ 3) &)

ion e~ (if B#0)
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Motivation Particles in fields I1LC

lons vs. electrons |

Typical values:

ion electron
g ~15cm?/Vs =~ 10*cm?/Vs
-
vp  ~3.75m/s ~25cm/ps Q@ E| =250V /cm
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Motivation Particles in fields I1LC

Gas Properties of TDR gas
o Drift velocity Transverse diffusion 1T

aT iffusi T
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[http://www-hep.phys.saga-u.ac.jp/ILC-TPC/gas/]
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Motivation Particles in fields I1LC

ILC

Positron source Detectors Electron source
Electrons ; H

Main Linac Damping Rings Main Linac

Figure: ILC baseline design [ILC-REPORT-2007-001]
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Firgure: ILC bunch structure [DESY-THESIS-2008-036]
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Motivation Particles in fields I1LC

lons vs. electrons |l
Typical values:

ion electron
p o ~15cm?/Vs =~ 10*cm?/Vs

—

vo ~3.75m/s ~ 2.5cm/ps @|?\:250V/cm

lon discs

Distance passed by the ion disc per bunch crossing:

Xdise = 0.199s - 3.75m/s = 74.6 cm

ILD TPC drift region: 2.25m

» there will be three discs in the ILD TPC
» they are produced in the amplification stage of the TPC

» in addition there are also the ions produced in the TPC drift

volume
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Motivation Particles in fields I1LC

lon production in detail
Primary ions:
> primary ions are spread over the entire GEM hole diameter
ionization takes place in the complete hole cross section

>
> ions ([WT]er > [wr]ion) follow the electric field lines
>

= intrinsic ion suppression (extraction efficiency Xprim.)

Klaus Zenker lon backdrift 9



lon production in detail

Particles in fields I1LC

Primary ions:

>
>

v

>

primary ions are spread over the entire GEM hole diameter
ionization takes place in the complete hole cross section

ions ([m‘]eﬁ > [wr]i‘m) follow the electric field lines

= intrinsic ion suppression (extraction efficiency Xprim.)

Secondary ions:

» = primary ions reaching a second GEM are in that case

secondary ions

» following the electric field lines they go through the center of

the GEM hole

» diffusion is negligible

» extraction efficiency:




lon suppression How-to Simulation Experiment

How to suppress ions?

» anode
® » cathode
® @@ » amplification GEMs
® e » gating GEM
¥ » ionizing particle

1. clean ions between 2 trains
= requires a high ion velocity (vp°" > 12m/s)
> since a high drift field is not wanted: pi°" > 4cm?/Vs
» to achieve this one could use a different gas mixture
2. gate ions in front of amplification volume
2.1. wire gate

> gate after each bunch train lons produced in
> possibly leads to field distortions the drift area can
2.2. GEM gate not be reduced

> coninuous ion supression
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lon suppression

GEM properties

How-to Simulation Experiment
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[Nucl. Instrum. Meth. A438, 376-408 (1999)]

Figure: lon feedback and electron transparency
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lon suppression Simulation

GEM geometry

p/2

CERN GEM:
double conical holes

Figure: GEM foil [http://gdd.web.cern.ch/GDD/|

kapton (50 pm) enclosed by copper surface (5 pm)
r=25pm, R =35um
pitch p = 140 pm

vV v v v Y

. 2
optical transparency Topt. = —ﬁ“h_ex- = fg,jz =226%
Circ.
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lon suppression

1. Field simulation:

» 3D model of the GEM
stack

» software using finite
element methods are used
to calculate potential

» CST Studio Suite™

| 4

eight-node cubic basic
elements

material is merged with
the PBA® algorithm

Klaus Zenker

How-to Simulation Experiment

» ANSYS®

» ten-node tetrahedral

» each element is filled

basic elements

with one material

global system: x, v, 2
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http://www.cst.com/
http://www.ansys.com/

lon suppression Simulation Experiment

2. Electron/lon drift: 200

» Garfield+-+
. . . 100
» treats lonization

processes and the

L
L - / N
ion/electron transport |

» electron transparency VALY ﬁ#

and ion back drift can be -0

z - Position / pm
o

Firgure: GEM field lines by Blanka Sobloher

calculated i 1T “ \‘
o [E=6kviem|
Initial Problems: -200 [
0 100 200
x - Position / pm
> Ansys » CST
» no FLC license for » there is no interface for
ANSYS CST in Garfield++

> | have no rights to work
on Ixplus (CERN)
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http://garfieldpp.web.cern.ch/garfieldpp/

lon suppression

2. Electron/lon drift:
» Garfield++

> treats ionization
processes and the
ion/electron transport

> electron transparency
and ion back drift can be
calculated

V' Initial Problems:

» Ansys
» | found a group with an
ANSYS license
» | should get access to
Ixplus soon

Klaus Zenker

5> Simulation Experiment

200

o
=]

z - Position / pm
o

-100

/

|

E,=1kV/icm

[E=6kviem|

-200

0

» CST

100

x - Position / pm

200

» interface was written

lon backdrift

and works

Firgure: GEM field lines by Blanka Sobloher


http://garfieldpp.web.cern.ch/garfieldpp/

lon suppression How-to Simulation Experiment

CST interface to Garfield++
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Garfield+-+ interface at work
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How-to Simulation Experiment
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lon suppression

How-to Simulation Experiment

Garfield++: e~ crossing a single GEM (TDR gas)

CST:

> Equire = 250V /cm
> Einduction = 6000 V/CII]
» Ugpm =300V

Klaus Zenker

ANSYS:

» Egrige = 600V /cm
> Einduction = 2000 V/Cm

» Uagrpm =300V
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o Simulation E
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lon suppression Experiment

Experiment

/ iy | Figure: Small TPC [DESY-THESIS-10-015]

The DESY Small Prototype is being used.
» diameter of 25cm » 55Fe source on top of the

» drift length of 20 mm cathode
Two type of GEMs will be considered in the beginning:

» standard CERN GEMs (R = 35 pm, 7op. = 0.23)

» modified CERN GEMs (R = 50 pm, 7op¢. = 0.46)
After commissioning stacks of two same type GEMs, a stack of
three GEMs will be used.
In addition, we contemplate to measure the currents in the system

to prove the ion suppression.
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lon suppression

Experimental setup
voltage divider

as power source

cathode (C)

field ring 1
field ring 2
GEM 1 (C)
GEM 1 (A)
GEM 2 (C)
GEM 2 (A)
anode (A)

(unsegmented)
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lon suppression How-to Simulation Experiment

Experimental setup
voltage divider

as power source

geometric
specifications

5MQ
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19.3 MQ

10 M2
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10 MQ

cathode (C)

field ring 1 4mm
field ring 2 8 mm

GEM 1 ( ¢ 8 mm
GEM 1 $

GEM 2 (

-~ B

(©)
GEM 2 (A) E
anode (A)

(unsegmented)
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lon suppression

Experimental setup

How-to Simulation Experiment

voltage divider geometric electrostatic
as power source specifications specifications
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_Upg = 1660V

Edrift = 248 V/cm

Ucem = 383V
Etransfer =092 V/Cm

Ucem = 383V

Einduction = 992 V/Cm



lon suppression

Calibration of th
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lon suppression

How-to Simulation Experiment

Results: Measurement of a Fe® source spectrum
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lon suppression How-to Simulation Experiment

Comparison of the effective double GEM gain
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Conclusion

Conclusion
Simulation:
» simulation with two different FEM software was prepared

» Garfield++ interface can be improved
» detailed study of ion back drift has started

» minimize the ion back drift
> keep electron transparency high
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Conclusion

Conclusion
Simulation:

» simulation with two different FEM software was prepared
» Garfield++ interface can be improved

» detailed study of ion back drift has started

» minimize the ion back drift
> keep electron transparency high

Experiment:

» commissioning of the small prototype not yet complete
» first results look promising
» after commissioning is finished:
» compare effective double GEM gain of standard CERN GEMs
with other GEMs (smaller hole radius 50 pm)
» compare these results with simulation

> build triple GEM stack in the small prototype with minimized
ion back drift
» measure the ion back drift
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Backup
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N
Mesh view for single GEM in CST

y=0 2-33.077

Type Low Frequency Hesh dy=1.4786 dz=4._6749

Meshplane at y @ ( Index= 0 ) iy=8 iz=166
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I
ANSYS vs. CST (preliminary)

Profile plot of the electric field (z-component)

L C T T T ]
5§ ]
=

~ 10° E E
w E 3
103 E 1 =
E Double GEM (365-250-100-1000) E
r csT ]

I ANSYS

N N 1 N N N 1 N N N 1 N N N 1 N N N

0 0.2 0.4 0.6 0.8 1

2/Z,0x

Klaus Zenker lon backdrift 28



I
Frist look (ANSYS, different backdrift definition)

Number of entries

ion back drift [%]

gain produced e~
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