

Avalanche simulations on single GEMs

Mythra Varun Nemallapudi¹

 1 Department of Physics, University of Arkansas Mentors - Rob Veenhof, Leszek Ropelewski Thesis external advisor - Archana Sharma Thesis internal advisor - Reeta Vyas Working group - GEMs for CMS

23-11-2011, RD51 mini week

Outline

- Experiments on Gasmixtures (Oct 2011)
	- Method
	- Observation
	- Analysis
- Experiments on Gasmixtures (Nov 2011)
	- Method
	- Observation
	- Analysis
- Charge-up effects
- Models proposed
- Penning parameter
	- Description and method
	- Comparison with experimental data
	- Goodness of fit
- Further analysis and Future work

Gain measurement with different gas mixtures (Oct)

(in collaboration with) Laura Franconi and Dr.Renju Thomas Experimental setup

- $E_D = 2$ kV/cm, $E_I = 3$ kV/cm
- $V_{\text{GEM}} = 200V$ to 560V
- Argon $CO₂$
- $c(Ar) = 50\%, 70\%, 80\%, 90\%$

Experimental method

- Voltages applied
- X-ray irradiated with 2mm collimator
- Anode current measured with pico-ammeter
- Higher gains measured first($V > V_{start}$)
- Lower gains measured next $(V < V_{start})$
- V_{start} value chosen slightly below the plateau
- Same spatial point on the GEM for all measurements

Gain Measurements (Oct) **Observation**

Gain

Fourier transform

Figure: Plot of current vs time for the mixture Ar-CO₂ $80 - 20\%$ at $480V$

Figure: Plot of current vs frequency for the mixture Ar-CO₂ $80 - 20\%$ at $480V$

Gain Measurements (Oct) **Observation**

Figure: An increase in current observed for the mixture Ar-CO₂ $80 - 20\%$ at $360V(V_{start})$

Figure: A decrease in current observed for the mixture Ar-CO₂ $80 - 20\%$ at 340V

Note: Values of current are negative owing to the measured electron current

Gain Measurements (Oct)

Observations

- Fourier analysis reveals 19s oscillations in current
- Gain decreases by $15 30\%$ for lower gains
- Gain is stable for higher gains
- Gain offset upto 30% between lower and higher gains
- Marked difference in the gain trend above and below V_{start}

Analysis

- Oscillations not due to filter settings in current device
- Shift in gain can be due to Charge up effects
- Source of oscillation unknown

Gain measurement with different gas mixtures (Nov)

(in collaboration with) Laura Franconi, Ozkan Şahin and Yalçın Kalkan Experimental setup

- $E_D = 2$ kV/cm, $E_I = 3$ kV/cm
- $V_{\text{GEM}} = 50V$ to $520V$
- Argon $CO₂$
- $c(Ar) = 70\%, 90\%$

Experimental method

- Different, clean spatial points on GEM for every voltage setting
- Points spaced 0.5cm apart to avoid irradiation on other regions
- Pulse height measured for low rates at plateau voltage
- X-ray irradiated with 1mm (dia) collimator
- Gain measured upwards in voltages starting $50V$
- Current measured for $\sim 15 30$ mins every point

Gain Measurements (Nov) **Observation**

Low gain

High gain

Figure: Plot of current vs time for the mixture Ar-CO₂ $70 - 30\%$ at $320V$

Figure: Plot of current vs time for the mixture Ar-CO₂ $70 - 30\%$ at $480V$

Note: Values of current are negative owing to the measured electron current

Gain Measurements (Nov) **Observation**

- ¹ Region A- Initial increase in current to reach a maximum value
- Region B- Decay of the current
- ³ 'Region A' was not observed for higher gains
- Time taken to reach maximum decreases with increasing gain
- ⁵ Relative variation in gain decreases with increasing gain
	- $\sim 30\%$ for lower gains
	- $\sim 5\%$ for higher gains

Charge-up Previous observations(Gabriele Croci)

Gain Stability

Figure: Plot of GEM stability over time extracted from diploma of Gabriele Croci - Study of relevant parameters of GEM-based detectors

Interpretation Two phenomenon occuring:

- ¹ Charge-up: Responsible for focussing of E-field thereby increasing gain
- polyimide polarization: Causes an opposing E-field thereby decreasing gain

Note: Values of current are negative owing to the measured electron current

• $I_{\text{anode}} = 2nA$ • Number of e^- = $1.25 \times 10^{10} s^{-1}$

- Xray collimated area Circle of 1mm diameter
- Number of gem holes in the given area $= 45$
- Expected loss at 20% of effective gain $= 2.5 \times 10^9 s^{-1}$
- Rate of e⁻ deposition per hole $=$ 5.5 \times 10⁷Hz

Figure: Plot of % fraction of loss on polyimide/effective gain vs V_{GEM}

Charge-up Model

Gain increase

Gain increase

Figure: E-field due to e^-s on polyimide that reduce further losses

Figure: Histogram of loss distribution on polyimide at low gains

Charge-up Model

Gain decrease

Gain decrease

Figure: Large accumulation of charge causing an opposing E-field

Figure: Histogram of loss distribution on polyimide at high gains

Gain Measurements (Nov)

Analysis

- A clear case of charge-up influencing the gain
- Increase of gain
	- Initially accumulated e^-s distort the E-field pushing away the incoming $e^{-}s$ from polyimide which would otherwise be lost
	- polyimide loss $%$ decreases drastically, reaching zero (arguably)
	- Effectively increases the gain
- Reduction of gain
	- As more charges accumulate, a vertical component of E-field is produced
	- This reduces the net E-field inside GEM hole
	- Situation is equivalent to a reduced GEM voltage

Gain Measurements (Nov) Further Analysis

- Calculation of the two predominant phenomena:
	- 1 Polyimide loss function (essentially a rapidly decreasing function)

$$
Loss\% = L_0 \times f \downarrow (t_0)
$$

2 Net charge deposited and the opposing E-field developed

- Polyimide conductivity influences the recombination of e^- deposited on polyimide
- Scaling of time and gain doesn't agree with the expected values
- Space charge influence should be considered
- Role of ion deposition in reducing the gain
- X-ray stability to be checked

Simulation Setup

Standard GEM

- $V_D = -V_T E_D \times h_D$
- $V_{\rm I} = V_{\rm B} + E_{\rm I} \times h_{\rm I}$
- $V_{\rm T} = -V_{\rm B} = -\frac{1}{2}V_{\rm GEM}$
- $\varepsilon_{r,\text{polyimide}} = 3.5$
- $\rho_{r, \text{metal}} = 0$
- $h_D = 3$ mm, $h_I = 2$ mm
- $D = 70 \mu m$, $d = 50 \mu m$
- $T = 50 \mu \text{m}$, $t = 5 \mu \text{m}$
-

Voltage across GEM

Figure: Hypothetical plot showing the gain behaviour for different measurement sets and its effect on χ^2

Figure: Gain behavior at lower(fig.below) and higher(fig.above) gains influencing the initial value

Simulation setup

- $E_D = 2$ kV/cm
- $E_{\rm I} = 3 \text{ kV/cm}$
- $V_{\text{GEM}} = 200$ V to 500 V in steps of 20V
- Argon $CO₂$
- $c(Ar) = 70, 90$
- Number of avalanches for $V_{\text{GEM}} = 200V$ to $440V$ is 10,000
- Number of avalanches for $V_{\text{GEM}} = 460V$, 480V and 500V is 3,000

Experimental data

Measurements on gas mixtures Nov(2011)

The equation

$$
\chi^2 = \Sigma \left(\frac{G_{measured} - g_{scaling} G_{simulated} - g_{offset}}{\sqrt{\sigma_{measured}^2 + \sigma_{calculated}^2}} \right)^2
$$

$$
\chi^2
$$
 plot for Ar/CO₂ (70/30)

Gain ratio at $rP = 0.70$

$$
\chi^2
$$
 plot for Ar/CO₂ (90/10)

Gain ratio at $rP = 0.50$

Future work **Overview**

- 1 Gain measurements at low X-ray rates
- ² Measurements for gain dependence on diameter and pitch
- ³ X-ray machine stability measurements
- ⁴ Achieve a complete understanding of charge-up through simulations and comparison with measurements

Future work

Low rate measurements

Set up

- X-ray collimator 1cm diameter
- Reduced photon rate by absorbers
- Nickel absorber to filter K_{β} line of X-ray
- Previously unused GEM for measurements
- I_{sampling} reduced from 2s to 20ms

Initial-rate of charge up per GEM hole

- Greater number of GEM holes (4500)
- Charge up rate per hole reduces by 100 times
- Sampling zoomed 100 times
- $\bullet~\sim 10^4$ factor slowing down of charge up

Future work Influence of GEM hole diameter

- Need for the measurement
	- Difference in the behavior of GEM gains at lower diameters between experimental data (S Bachmann et al. -1999) and simulated data
	- Inconsistencies in GEM fabrication affect gain
- GEMs being fabricated for the following hole diameters: $30 - 120 \mu m$,
- Charge up effects crucial at low gem diameter Figure: Comparison between

Rob Veenof, Leszek Ropelewski - RD51, Archana Sharma - CMS Sven Dildick, Laura Franconi, Renju Thomas, Andrey Marinov, Stefano Colafranceschi, Marco Villa, Miranda van Stenis, Ozkan Şahin, Yalçın Kalkan, Ankit Mohapatra and Tania Moulik