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Outline 
 
 

Numerical adventures: Taming stubborn system of equations 

 

Applications as a component of the simulation framework: RPC, 

Micromegas, GEM, MHSP 

 

Future plans: 

 





BEM Solvers 
 Numerical implementation of boundary integral equations (BIE) based on Green’s function by discretization 

of boundary. 

 Boundary elements endowed with distribution of sources, doublets, dipoles, vortices (singularities). 

 Useful in fluid dynamics, fracture mechanics, acoustics, optics, gravitation, electromagnetics, quantum 
mechanics … 

SdrrrGr
S

  )(),()(  rr
rrG




4

1
),(

    A

Electrostatics BIE 

Charge density at r’ 

Green’s function 

 - permittivity of medium 
discretization 

Accuracy depends critically on 
the estimation of [A], in turn, the 
integration of G, which involves 
singularities when r →r'. 

Most BEM solvers fail here. 

Potential at r 

Influence 
Coefficient 
Matrix 

{ρ} = [A]-1{Φ} 



Basis Function Approach  
Centroid Collocation 
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icx Collocation 

point 

No singularities, no special treatments, no additional formulations 

Carry out the integrations! SdrrrGA
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Node where only boundary 
condition is satisfied 

nearly exact BEM 



System of algebraic equations 
Important definitions 

The Singular Values of the rectangular / square matrix A with real 
elements is defined as the square root of the eigenvalues of ATA. 
 
The Condition Number is the ratio of the largest to the smallest 
singular value. 
 
A matrix is Ill-Conditioned Matrix if the condition number is too large. 
How large the condition number can be, before the matrix is ill- 
conditioned, is determined by the machine precision. Well-conditioned 
matrices have condition numbers close to 1. 
A matrix is Singular if the condition number is infinite. The 
determinant of a singular matrix is zero. 
 
The Rank of a matrix, is the dimension of the range of the matrix. This 
corresponds to the number of non-singular values for the matrix, i.e. 
the number of linear independent rows of the matrix. 
 



A square matrix A is ill-conditioned if it is invertible but can 
become non-invertible (singular) if some of its entries are changed 
ever so slightly. 
Solving linear systems whose coefficient matrices are ill-
conditioned is tricky also because even a small change in the right-
hand side vector can lead to radically different answers. 
In presence of round-off errors, ill-conditioned matrices are very 
hard to handle. 
They occur when degenerate boundaries, degenerate scales related 
to special geometries, mixed boundary conditions, large difference 
in dielectric permittivity are present. 
Besides unit circle, the degenerate scale problem under different 
contours with specific geometry may be encountered, and the 
accurate degenerate scale is dependent on the discretization 
boundary density in BEM. Mathematically speaking, the 
singularity pattern distributed along a ring boundary resulting in 
a zero field introduces a degenerate scale. 

Why need we be concerned? 
Encounters of strange kind 



Good old days 
LU decomposition 

1ii 

The LU decomposition is a method reducing a square matrix  to a product of two 
triangular matrices (lower triangular  and upper triangular). It does not require a positive 
definite matrix, but there is no guarantee that it is equivalent to solving a system of linear 
equations by the Gauss elimination. Its advantages include easy implementation, speed 
and disadvantages include numerical instability without pivoting. 
 
The LU decomposition is most commonly used in the solution of systems of simultaneous 
linear equations. The method is at least twice as fast as other decomposition algorithms. 
Unfortunately, the method has less desirable numerical problems. 
 
For ill-conditioned problems, or when high accuracy is needed, other decomposition 
would be preferred. 



Enters Singular Value Decomposition 

Using two orthonormal matrices, SVD can diagonalize any matrix  and 
the results of SVD can tell a lot about (numerical) properties of the matrix. 
SVD offers a numerically stable way to solve a system of linear equations. 
The  diagonal entries of  S are the singular values of the least-squares 
matrix A. For N  charges  there  will  be  N  singular  values.  The 
condition number  of  A  is  defined by  the  ratio  of  the  largest to the 
smallest singular value . 
Thus, one can compute the eigenvalues of directly from the original 
matrix. Second, the number of nonzero singular values equals the rank of 
a matrix. Consequently, SVD can be used to find an effective rank of 
a matrix, to check a near singularity and to compute the condition 
number of a matrix. That is, it allows to assess conditioning and 
sensitivity to errors of a given system of equations. 



Observation of significant improvements 
Error estimates 

Errors using LU and SVD 

(note the log scale!) 

Charge densities using LU and SVD 



Observation of significant differences 
Effect on detector physics 

Drift lines in a bulk micromegas (SVD) Drift lines in a bulk micromegas (LU) 





neBEM Strengths 

 Can handle large length scale variation, including thin 

structures 

 Can provide potential and field at arbitrary locations 

 Can handle intricate 3D geometries 

 Can handle multiple-material complex systems 

 Has been made reasonably robust and fast 

 

 Integrated to the fortran version of Garfield 

 Using its toolkit nature, neBEM can be easily interfaced 



neBEM  (nearly exact Boundary Element Method) as a toolkit 

A new formulation based on green’s function that allows the use of exact close-form  

analytic expressions while solving 3D problems governed by Poisson’s equation. It is  

very precise even in critical near-field regions and microscopic length scale.   

It is easy to use, interface and integrate neBEM 

Stand-alone 

A driver routine 

An interface routine 

Post-processing, if necessary 

 

Garfield 

Garfield prompt 

Garfield script 

 

Interface to Magboltz, Heed 

Charge density at all the interfaces 

 

Potential at any arbitrary point 

 

Field at any arbitrary point 
 

Capacitance, forces on device  

components properties can be 

obtained by post-processing 

New simulation framework 
Garfield+Magboltz+Heed+neBEM 
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AFM Images and analysis of uncoated P-120 bakelite surfaces 
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Roughness studies of RPCs   



o Regularly shaped 4 micron high 

dielectric pillar/pyramid on bakelite 

surface 

o Base of the rectangular pillar and 

the pyramid shaped one is 100 
micron square 

o Gas gap is 2 mm 

Roughness studies on RPCs 



o Regularly spaced 

insulating pillars between 

grid and anode plane, 

guarantee the uniformity 

of gap 

 

o Pillars radius larger than 

mesh cell size, particles 

are not detected in this 

region 

Mesh with one 

spacer : mesh 

pitch 80 m, 

spacer 

diameter 400 
m 

Electron Drift Lines (2D Picture) 

With Spacer (LU) Without Spacer 

 Electron drift lines get distorted in 

spacer region, do not reach anode 

plane 

 Total charge collected by anode 

affected 

 Effect on spatial resolution, 

energy resolution etc. 

 Only preliminary results, need 

further investigation  

Micromegas 
Effect of spacers 



Avalanche of Electrons (2D picture) Drift of Secondary Ions (2D picture) 

 Secondary ions from amplification region drift to drift region 

 Distortion of electric field 

 Micromegas micromesh stops a large fraction of these ions  

Micromegas 
Ion back-flow 



Variation of Backflow fraction at a field ratio of 100 for various values of the ratio t/p 

(Amplification gap – 45 m) (Amplification gap – 58 m) 

Variation of Backflow fraction with field ratio for 70 m amplification gap 

(Pitch – 32 m) (Pitch – 45 m) 



Non-staggered GEM 



Staggered GEM with LU 



Staggered GEM with SVD 



Potential contours in several GEMs 



Axial Electric Field  

Electron Drift Lines  

Gas : Pure Xenon Temp.: 300 K, Pressure : 1 Atm 

3D Picture 

2D Picture 

Straight Hole Bi-conical Hole 

MHSP 
efficiency, gain 



Comparison with existing simulated results (2D calculations using Maxwell)  

Variation of Total Gain  

With Hole Voltage With Anode to Cathode Voltage 

Variation of Electron Collection Efficiency of Anode 





Interface to Garfield++ 

 In the fortran version, neBEM essentially uses the Garfield 

geometry modeler to set up its model. 

 

 An improved version of the geometry modeler is being 

developed for Garfield++. As soon as it is there, neBEM will 

be happily interfaced to the new Garfield++. 



Improved geometry modeler, user interface 

 Simple enhancements such as mirror repetitions 

 

 Interface to ROOT and Geant 4 geometries; user interfaces 

based on such and similar programs will immensely help users 

 

 A geometry modeler tuned for neBEM (likely to be based on 

CGAL or a similar library) 



Thank you! 


