Index	Microbulk	Argon	Neon	Conclusions	Back-up
	Characterization of microbulk detectors in argon- and neon-based mixtures				
		F.J.	lguaz		

on behalf of IRFU-CEA/Saclay: E. Ferrer-Ribas, A. Giganon and I. Giomataris

RD51 mini week - 22nd November 2011

Motivation

- Micromegas detectors have been generally tested in Ar + 5% isobutane. This gas is suppossed to be the best for a high gain and excellent energy resolution.
- What happens in other gases? What is the relation of gain and energy resolution with the gas and the gap distance?

Application

- Results will serve as a reference for Micromegas users.
- Higher gains are envisaged to reduce the energy threshold of detectors to allow its application in sub-keV experiments.

Index	Microbulk	Argon	Neon	Conclusions	Back-up
Index					

- 1 Micromegas and microbulk technology
- 2 Characterization in argon-based mixtures
- 3 Neon-based mixtures for sub-keV applications

4 Conclusions

IndexMicrobulkArgonNeonConclusionsBack-upMicromegas and microbulk technology
Micromegas: A Micro-Pattern Gas Chamber detectorSectorSectorSector

I. Giomataris (1992)

A thin metallic grid and an anode plane, separated by insulated pillars. They define a very little amplification gap $(20-300 \mu m)$.

A support ring or frame adjust the mesh on top of the readout plane, with the help of some screws.

- Good properties: High granularity, good energy and time resolution, stable, easy construction, little mass and radiopure.
- Limitations: Large scale production, dimensions and resolutions.

Index Microbulk Argon Neon Conclusions Back-up Micromegas and microbulk technology The microbulk technology File File

Readout and mesh in one piece: S. Adriamonje et al., JINST 5 (2010) P02001

The pillars are constructed by chemical processing on a kapton foil, to which the mesh and the readout plane are attached.

A conventional and a microbulk Micromegas CAST detector

IndexMicrobulkArgonNeonConclusionsBack-upMicromegas and microbulk technology
General features of microbulk detectors

Good features

- Excellent energy resolution.
- Low intrinsic background.
- Better particle recognition.
- Low mass and flexible structure.
- Stable gain during long periods.

Being improved

- Higher electrical capacity.
- Large area detectors.
- Mass production.

- Setup designed to characterized a maximum of three Micromegas detectors in the same gas conditions.
- A mesh frame is used as drift cathode: drift distance = 10 mm.
- The top cap contains several holes, covered by an aluminized mylar film, used to calibrate the detectors.

- Two microbulk detectors (diameter: 35 mm, a single anode) with respectively gaps of 50 and 25 μ m have been tested in argon-based mixtures, using as a quenchers isobutane, cyclohexane and ethane. We focus on the first detector.
- Calibrated with an iron source (55 Fe, x-rays of 5.9 keV).
- Electronic chain: ORTEC 142C preamplifier + ORTEC 472A amplifier + AMPTEK MCA-8000A.

IndexMicrobulkArgonNeonConclusionsBack-upCharacterization in argon-basedmixturesMotivation

- The effect of quenchers was already studied with proportional counters in Agrawal & Ramsey, *Nucl. Instrum. Meth. A* **273** (1988) 331.
- Lower gains and worse energy resolutions are expected for quenchers whose ionization threshold is more different from the 1st metastable levels of argon (11.4 eV).
- Note that the cyclohexane has a lower ionization threshold for ionization (9.9 eV) than isobutane (10.7 eV) and ethane (11.7 eV).

Quencher	I_e	Energy Res.		
	(eV)	10^{2}	10^{3}	10^{4}
Methane	13.0	14.9	15.0	16.1
Carbon dioxide	13.8	15.8	16.5	16.8
Propane	11.2	13.6	14.3	14.5
Ethane	11.7	14.0	14.0	14.4
Isobutane	10.7	13.8	14.0	14.5
Propylene	9.7	14.3	14.8	15.8
Trans-2-butene	9.2	14.5	14.8	15.2

Procedure

The drift voltage is varied for a fixed mesh voltage and the peak position is normalized by the maximum value.

- For E_{drift}/E_{mesh} lower than a specific value, there is a maximum in the electron transmission (A=0.01 for a 5%). For higher drift fields, the mesh stops being transparent for primary electrons.
- The plateau widens with the porcentage of isobutante and seems to be correlated with the diffusion coefficients.

- The energy resolution is correlated with the electron transmission. Best values at the maximum of the mesh transparency.
- At high isobutane quantities, there is a continuous degradation.
- Best values respectively obtained at 5% and 7% iC $_4H_{10}$.

The ratio E_{drift}/E_{mesh} is fixed so as the mesh showed the maximum electron transmission. The mesh voltage is varied and the peak position registered.

- An absolute gain greater than 10^4 is reached before the spark limit.
- At low quantities of isobutane, there is an over-exponential behaviour due to UV photons (P. Fonte *et al.*, *NIMA* 305 (1991) 91 and I. Krajcar Bronic *et al.*, *NIMB* 142 (1992) 219).

- It is constant for a wide range of amplification fields.
- For low fields, bad resolution due to the worse signal-noise ratio.
- For high fields, the resolution worsens due to the gain fluctuations. This effects doesn't appear for high quantities of isobutane.

The plateau of maximum transmission is wider in argon-cyclohexane mixtures than in other gases. It is similar for the other two mixtures.

IndexMicrobulkArgonNeonConclusionsBack-upCharacterization in other argon-based mixtures
The gain curves for a gap of 50 μmMicrobulkBack-up

- A gain of 4×10^4 is reached in argon-cyclohexane before the spark limit.
- Amplification fields for 10% of quencher and a gain of 10⁴: 61 (cyclohexane), 65 (isobutane) and 72 kV/cm (ethane).

- There is a degradation at high gains due to over-exponential behaviours. It disappears for high quencher concentrations but the best value worsens.
- 12% FWHM for gains 10³-10⁴, independently of the quencher.

- Gains up to 10^5 are reached in neon-based mixtures (a factor 2).
- The amplification field needed for a fixed gain does not increase with the quencher concentration as in argon-isobutane mixtures.
- Amplification fields for 5% of quencher and a gain of 10⁴: 65 (argon-isobutane) and 75 kV/cm (neon-isobutane).

- The energy resolution of the 50 μ m-thickness-gap detector improves: from 11.6% FWHM in Ar+5% lso down to 10.5% FWHM in Ne+7% lso.
- Good values are also obtained at gains as high as 5 × 10⁴.
- This effect can not be explained by the primary ionization but by the fluctuations in the avalanche.

• The energy resolution of a Micromegas detector can be expressed as

$$R(\% \text{ FWHM}) = 2.35 \sqrt{\frac{W}{E_0} (F+b)}$$

where E_0 is an energy reference, F is the gas Fano Factor, W is the mean ion-electron energy and b is the detector contribution.

- Note that W = 36.4 eV for Ne and 26.3 eV for Ar and the Fano factor is 0.17 for Ne and 0.22 for Ar. Then $W \times F$ is 6.19 for Ne and 5.79 for Ar.
- The energy resolution should be worse in neon than in argon mixtures!!

Fluctuations vs Townsend coefficient

Ionization yeld vs the amplification field

80

100

H.Schindler et al., Nucl. Instrum. Meth. A 624 (2010) 78

There are less avalanche fluctuations due to a higher ionization yield, i.e., the energy acquired by the electrons of the avalanche creates more than electrons than atom excitations in neon than in argon-based mixtures.

- Mesh pulses were acquired by a LeCroy WR6050 oscilloscope. The energy spectrum has been generated with the pulses's amplitude.
- In neon-based mixtures, the neon escape peak at 910 eV has been observed. The energy threshold is at 400 eV.
- In argon-cyclohexane mixtures, the threshold is at 300 eV.
- Next step: CAST detector (1.257 nF vs 300 pF of detectors used).

Index	Microbulk	Argon	Neon	Conclusions	Back-up
Conclusio	ons				

Summary

- Microbulk detectors have been tested in argon- and neon-based mixtures. The maximum gain was respectively 4×10^4 and 10^5 and the energy resolution 11.6% and 10.5% FWHM at 5.9 keV.
- Three different quenchers have been used: isobutane, cyclohexane and ethane. The first one increases the gain and the other reduces it. They have no effect in the best energy resolution value.
- The energy threshold of microbulk detectors have been studied and values as low as 300 eV have been observed.

Outlook

- Characterization of microbulk detectors with a gap of 12.5 and 25 μ m and different holes and pitch in argon-isobutane mixtures.
- Study of the energy threshold of bigger detectors like CAST.
- Possible quenchers like cyclohexene and other ideas are welcomed.

Index	Microbulk	Argon	Neon	Conclusions	Back-up

Back-up slides.

IndexMicrobulkArgonNeonConclusionsBack-upCharacterization in argon-basedmixturesDescription of the refrigerator

- The base gas is forced to pass by a glass vessel, filled with the liquid quencher like cyclohexane.
- The gas concentration is defined by the temperature of the liquid, which is fixed by the refrigerator in which the vessel is kept.
- The temperature can not be higher than the ambient one to avoid condensations inside the gas chamber, which may damage the microbulk detectors.

- There is no real plateau of maximum electron transmission plateau.
- There is a narrow range of fields for an optimum energy resolution.
- Gains $> 10^4$ are reached for all mixtures before the spark limit.
- 11.7% FWHM for gains 10^3 - 10^4 and all quenchers.
- The optimum is at higher quencher concentrations (iso: 7-15%).

- At low isobutane quencher concentrations, there is a plateau of maximum transparency but is reached at higher drift fields.
- At high quencher concentrations, there is an endless increase of the gain.
- Energy resolution is not more correlated with electron transmission. There is a narrow range of fields for which is the optimum.

- At low isobutane quencher concentrations, there is a plateau of maximum transparency but is reached at higher drift fields.
- At high quencher concentrations, there is an endless increase of the gain.
- Energy resolution is not more correlated with electron transmission. There is a narrow range of fields for which is the optimum.

IndexMicrobulkArgonNeonConclusionsBack-upCharacterization in argon-basedmixturesThe gain curves for a gap of 25 μm

- A gain of 10⁴ is reached for all mixtures before the spark limit.
- However, higher quencher concentrations are needed.
- For the same % and field, higher gain with cyclohexane than with isobutane and ethane.

IndexMicrobulkArgonNeonConclusionsBack-upCharacterization in argon-based mixturesThe dependence of the energy resolution with the gain for a gap of 25 µm

- There is a degradation at high gains and low concentrations.
- The optimum is at higher quencher concentrations (isobutane: 7-15%).
- 11.7% FWHM for gains 10³-10⁴, independtly of the quencher.

- Micromegas detectors have been tipically operated in argon-isobutane mixtures, as they are well adapted for measurements in the 1-10 keV range, providing an excellent energy resolution and gains up to 2 × 10⁴.
- Other gases are being studied to increase its sensitivity in the sub-keV region, which could allow its application in synchroton radiation and Dark Matter searches where the low energy threshold is crutial.
- The signal to noise ratio must be increased and higher gains are needed.
- Neon as base gas has been studied as the charge per single avalanche increases and approaches the Rather limit (10^8 electrons).

- The energy resolution is worse in neon-based mixtures for a gap of 25 μm and a high quencher concentration is required.
- Best values: 12.7% (25% iso), 17% (10% cyclo), 14.8% FWHM (25% ethane).

- CAST experiment uses a LHC dipole magnet to detect solar axions.
- Energy range of interest: 1-8 keV.
- 3 Micromegas detectors installed. Readout: 106×106 strips, 550 μ m pitch. Gas: Ar + 2.3% Isobutane at 1.44 bar.
- References: J. Phys. Conf. Ser. **179** (2009) 012015 and the talks at the TIPP2011 conference: "CAST micromegas background in the LSC" and and "Background rejection of Micromegas readouts".

- A thin microbulk detector has been placed in the beam, equiped with a converter (¹⁰B or ²³⁵U) deposited on the drift electrode.
- Low material budget ⇒ Minimum beam perturbation and induced background.
- Wide energy range, high efficiency and accuracy.
- Future: 2D detector microbulk for an online beam profile monitor.

Feasibility studies in NEXT project

- Energy resolution: S. Cebrian et al., JCAP (2010) 1010:010.
- Gain: C. Balan et al., JINST (2011) 6 P02006.
- Radiopurity: S. Cebrian et al. Astropart. Phys. (2011) 34 354.
- Prototypes: T Dafni, talk at 5th Large TPC Conference, Paris, 2010.
- Background: F.J. Iguaz, http://zaguan.unizar.es/record/5731.

Feasibility studies in NEXT project

- Energy resolutions < 3% FWHM at 2458 keV $(Q_{\beta\beta})$ in pure xenon.
- Gains greater than 10^2 in pure xenon.
- Low background level due to the detector.
- High background rejection power ⇒ Four orders of magnitude.