

Progress with GEMROC front-end and fast DAQ

Martina Bucciantonio

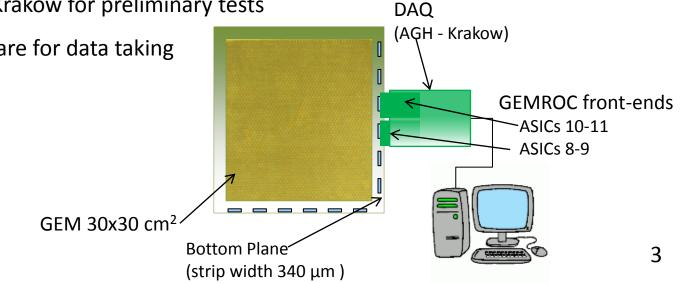
U. Amaldi, D. Bergesio, N. Malakhov,

R. Kieffer, F. Sauli, D. Watts

RD51 mini week

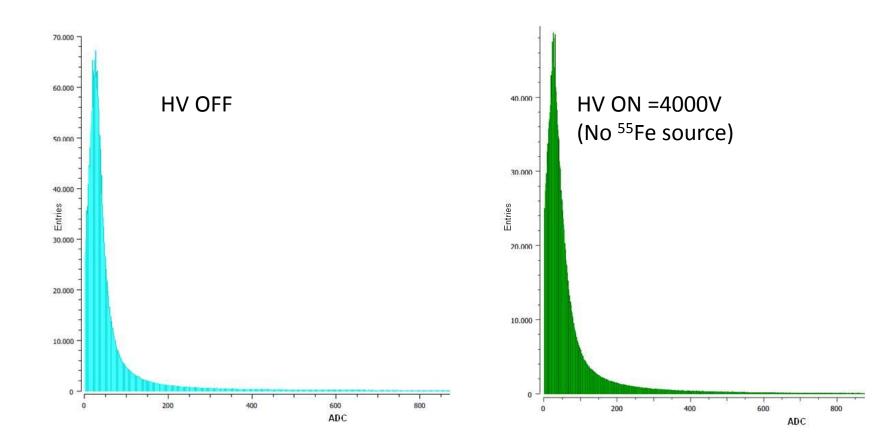
CERN

November 22th 2011


- GEM 30x30 preliminary tests with GEMROC front-end
 - Test setup
 - Noise characterization
 - 55Fe spectra and comparison with the GEM10x10 results
- TERA dedicated GEM 30x30 DAQ system
 - new GR_DAQ
 - Firmware status and software control interface

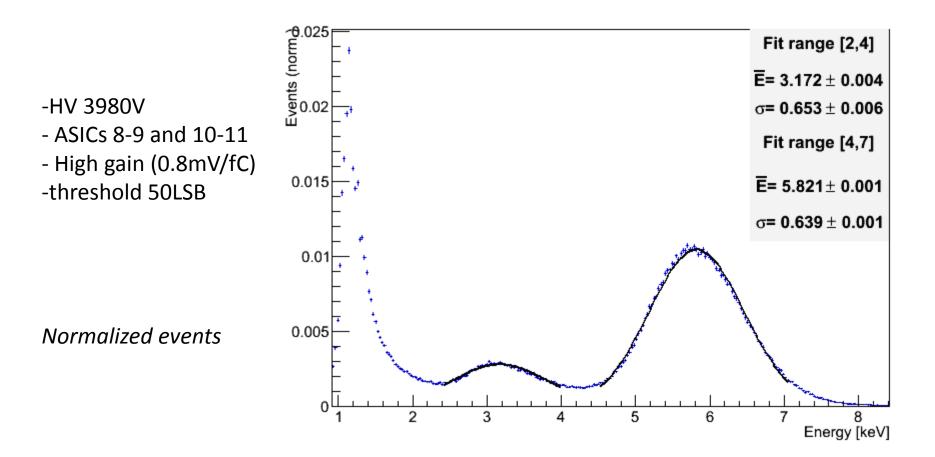
Setup

- GEM 30x30 cm² COMPASS style
 - Strips connected in pairs: 800 μm pitch
 - \Rightarrow less signal/noise because of the large capacitance, <u>but</u>
 - compensated by larger signals (shared between several strips)
 - Ar/CO₂ 70/30 gas mixture
 - CAEN NIM HV module (N470)
- 2 GEMROC Front-End boards
- DAQ provided by AGH-Krakow for preliminary tests
- Computer control software for data taking
- ⁵⁵Fe source



GEM 30x30 preliminary tests with GEMROC

Noise spectra

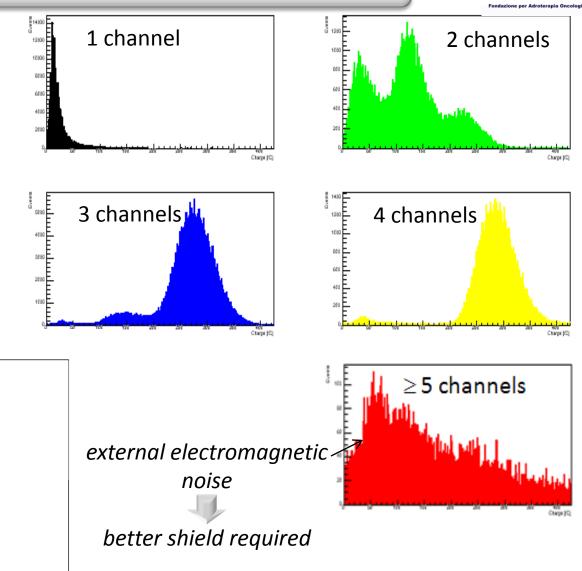

- ASICs 8-9 and 10-11 connected
- threshold 50LSB

GEM 30x30 preliminary tests with GEMROC

⁵⁵Fe spectra

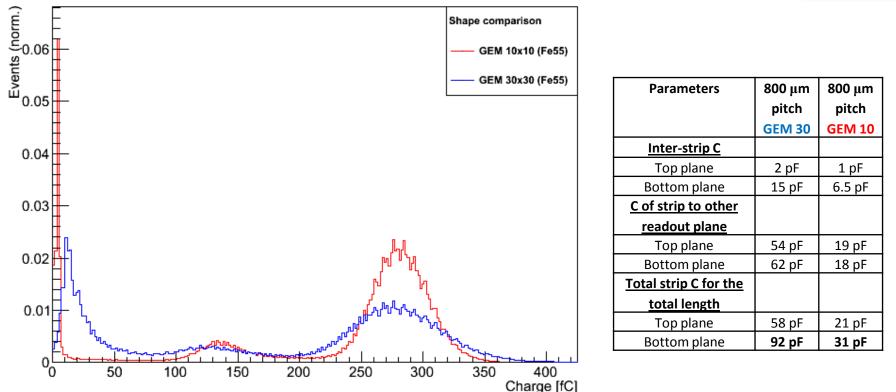
GEM 30x30 preliminary tests with GEMROC

Charge [fC]



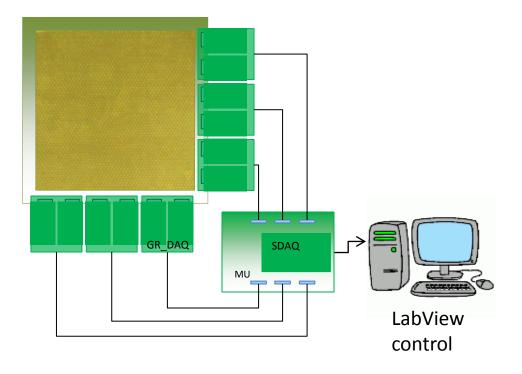
⁵⁵Fe spectra

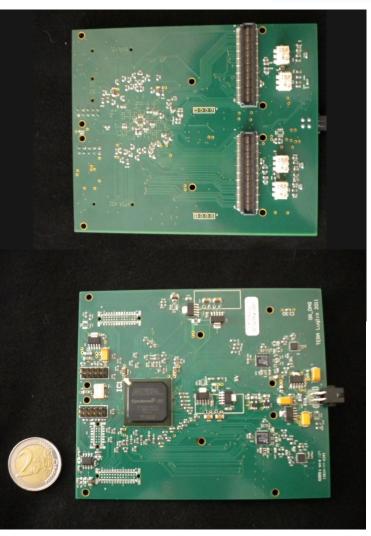
\$1


Channels over threshold distribution

-HV 3980V - ASICs 8-9 and 10-11 - High gain (0.8mV/fC) -threshold 50LSB

GEM 30x30 vs GEM 10x10

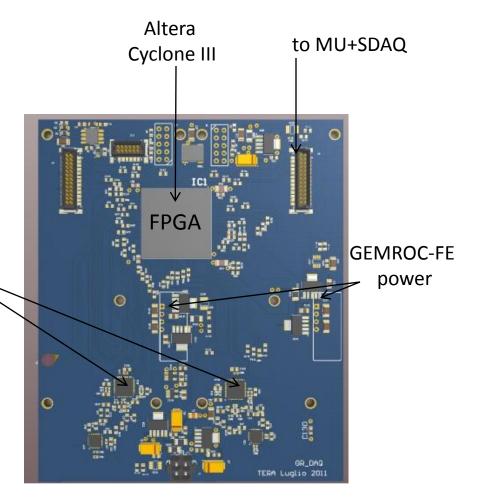



- Affordable signal/noise discrimination
- Preliminary test in good agreement with the design requirements:
 - low threshold : ~ 10fC for all the voltages (6fC on GEM10x10)
 - worste resolution and more sensible to the external noise
- DAQ speed to be increased for quick data taking run (aim of the PRR project by TERA)

GEM 30x30 Final Readout

- 12 GEMROC front-end boards
- 1 DAQ system (6 GR_DAQ + 1 MU+SDAQ)

GR_DAQ

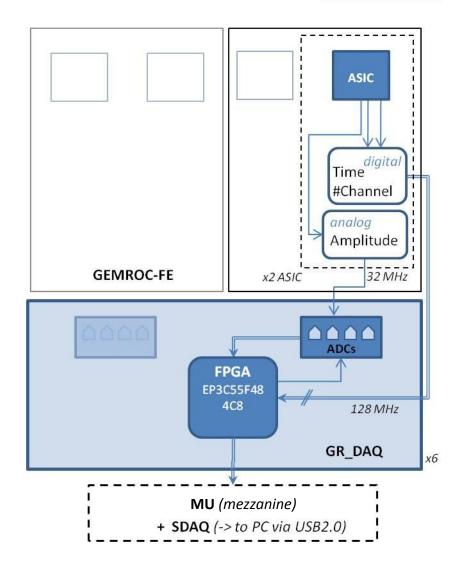


 provides biases and thresholds for the GEMROC chips and holds the front-end cards mechanically

 performs serialization and digitalization of the GEMROCs analog output buffer through the pipeline 12-bit ADC , serial LVDS output(Linear Technologies LTC2265-12)
 1 ADC/GEMROC-FE board

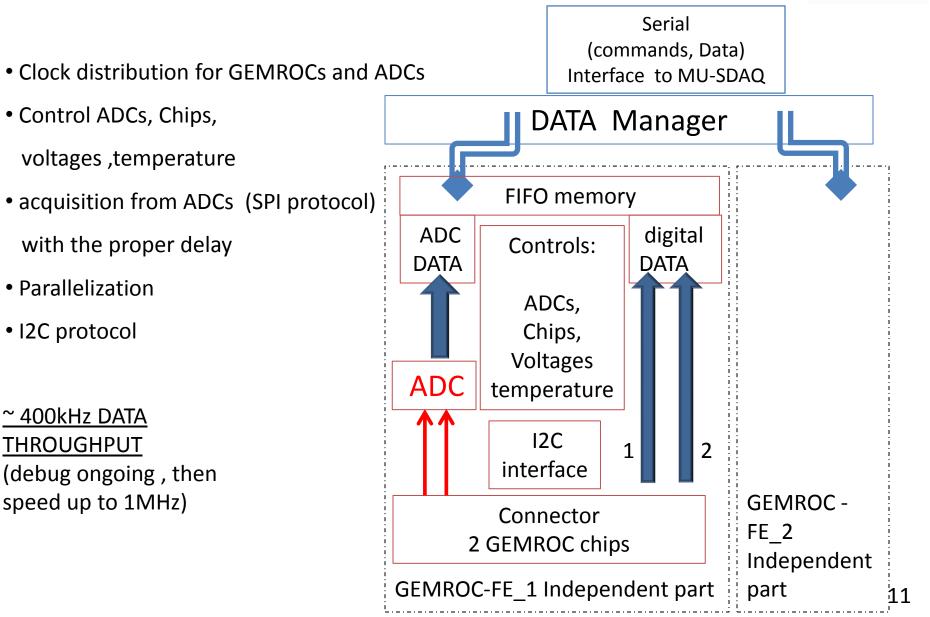
• sparse readout: records only the channels with a trigger and their neighbors (increasing the readout speed)

• Final aim: <u>~ 1 MHz DATA THROUGHPUT</u>



Connectors for GEMROC-FE boards on the bottom side

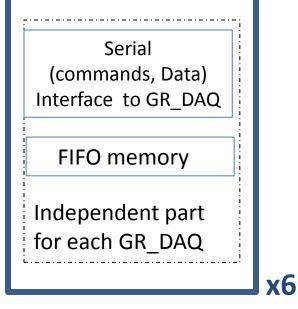
GR_DAQ Firmware



- parallel processing of 4 GEMROC ASICs per each GR_DAQ
- reading out digitized analogue amplitude
 using 12bits ADCs incoming at 32MHz
- time stamp, channel IDs out from GEMROC at 128 MHz, properly delayed and merged with the analog data (64 bits raw hits frame to PC)

GR_DAQ Firmware

TERRA Fondazione per Adroterapia Oncolog


Mu+SDAQ :

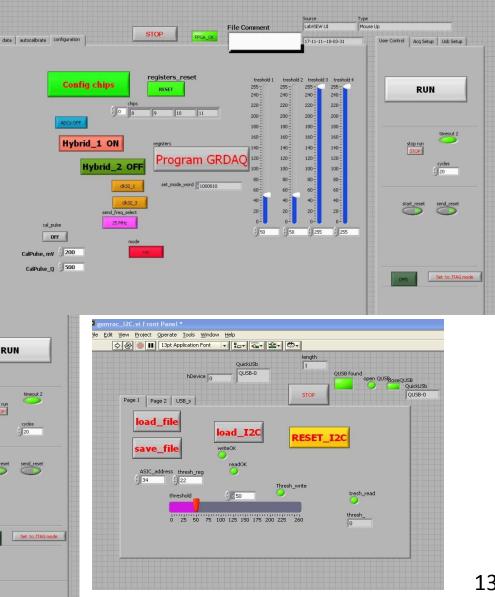
generic DAQ , flexible for different read-out

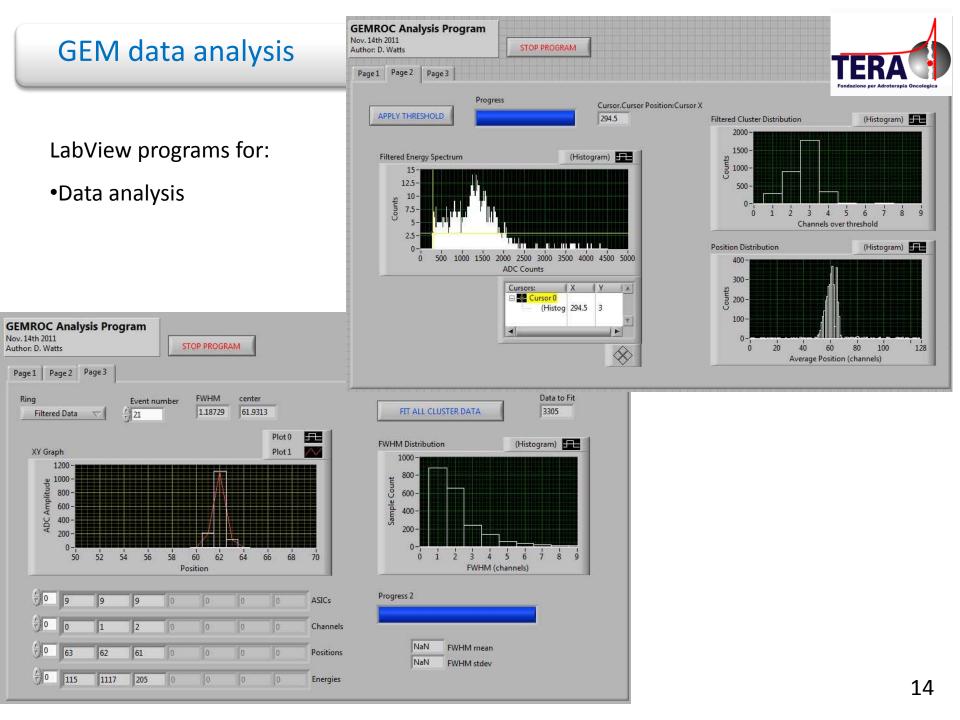
applications (ALTERA Cyclone III FPGA)

- data from the 6 GR_DAQs
- Voltage, temperature controls
- programmed by and communicate with
 PC via a QuickUSB Module (Bitwise Systems)
- embedded I2C interface

(transfer data rate up to 30 Mbytes/s)

Slow controls : Temperatures HV GEM control


Software interface



LabView programs for:

- config GemROCs
- readout program
- I2C control

autocalibrate configuration				STOP			FPGA_OK	File Comment				Source LabVIEW UI 17-11-1118-03-31	Type Mouse Up User Control	
()	data													
12	1	6	3374	3968	0	0		0						
	1	6	3374	3968	0	0								RUN
0	1	6	3374	3968	0	0						_		
	1	6	3374	3968	0	0						_		
	1	6	3374	3968	0	0								
	1	6	3374	3968	0	0								
	1	6	3374	3968	0	0								timeout 2
	1	6	3374	3968	0	0								STOP
	1	6	3374	3968	0	0								
	1	6	3374	3968	0	0								cycles
	1	6	3374	3968	0	0								- Shee
	1	6	3374	3968	0	0								
	1	6	3374	3968	0	0							-	
	1	6	3374	3968	0	0							sta	rt_reset send_reset
	1	6	3374	3968	0	0								
	1	3	1768	3968	0	0								
	1	3	1768	3968	0	0								
	1	3	1768	3968	0									

GEMROC on GEM 30x30:

- good signal/noise discrimination
- preliminary test in good agreement with the design requirements
 - low threshold : < 10 fC for all the voltages
- analogue parameters, gain, offset spread, time resolution, high count rate capability as expected

GEM 30x30 DAQ:

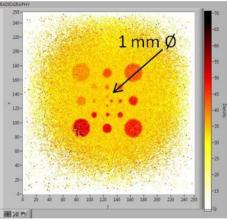
- complete GEM 30x30 readout ongoing
- parallel processing of 4 GEMROC ASICs /GR_DAQ
- reading out digitized analogue amplitude using 12bits ADCs
- time stamp, channel IDs properly delayed and merged with the analog data (64 bits raw hits frame to PC)
- Labview control and analysis softwares
- increase the DAQ speed ~ 1 MHz DATA THROUGHPUT Aim of the Proton Range Radiography project by TERA: for 1x1 mm² pixel and an image size of 30x30 cm² (10⁵ pixel) ~10⁷ proton tracks (250 MeV proton beam) to be recorded (achievable in 10 seconds @ 1 MHz)

Thanks for your attention

PRR10

Good spatial resolution and density resolution performances tested at the PSI (June 2010)

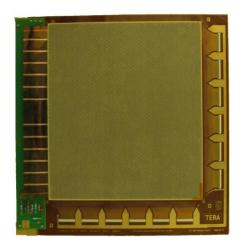
- some improvements apported (temperature sensors, fans, new GEM HV power supply, software user-friendly)
- delivered at CNAO (Pavia-IT) test beam in June 2011


Real size proton radiography

(first step toward a complete protonCT)

PRR30 under construction

Same design Bigger dimensions 48 scintillators Faster GEM- electronics from ≈ 10 kHz to 1 MHz



Looking forward to the PRR30

2 GEMs detector :

1 GR_DAQ prototype tested Main DAQ -> ready for 1 GEM DAQ -FPGA firmware ->ADC debug ongoing 12 GEMROC_FE boards /GEM Mechanical frame ready

SCINTILLATORs:

48 assembled and tested (SiPM readout electronic included) mechanical frame ready DAQ board-firmaware ready for 30 scintillators

SOFTWARE:

ongoing from PRR10 to PRR30

