Accelerator R&D

ESPG R. Aleksan November 28th, 2011

Introduction

. Accelerator Science and Technology

3. Conclusion

Unraveling the fundamental mysteries of the universe requires

State of the art accelerators

These accelerators have to address different challenges

> "Energy Frontier" i.e. reaching ever higher energy

"Intensity/Power Frontier" i.e. delivering ever higher luminosity
"Probes Diversity" i.e. accelerating many different probes

State of the art accelerator technology, instrumentation and test facilities are needed

Note: These infrastructures and technology can be useful (vital) to many research fields, as well as for industrial developments

Energy Frontier Accelerators

1	1	1	1	2	2	2	2
9	9	9	9	0	0	0	0
8	8	9	9	0	0	1	1
0	5	0	5	0	5	0	5
SppS (p+	p-)			LHC (pp)			
LE	P (e+e-)		<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·	·····	
PETRA (e+e-)							
	HERA (e	p)					
M. Ring	(p)	Tevat	ron p+p-	Teva	ntron (p+p-)		
PEP (e+e-)							
SL	C (e+e-)						
TRISTAN (e+e-)							

To be able to build future accelerators, a strong sustainable R&D program is indispensible

It includes 3 levels of R&D

Exploratory R&D

Assessment of new ideas

Demonstration of conceptual feasibility of new and innovative principles No planned facility exist

e.g. Plasma acceleration

Targeted R&D

Demonstration of the Technical feasibility of all critical components

Demonstration of the feasibility of fully engineered system

Industrialization R&D

Transfer of technology

Large scale production and cost optimization

Diversification of Applications

e.g. CTF3, 20T magnet e.g. High Yield production of SC 35 MV/m cavities

Accelerator Science and Technology

Topic to be discussed in Accelerator Science and Technology section :

- Accelerator R&D and infrastructures needed
 - for allowing one to realize the new (or upgrade of) accelerator facilities with their respective parameters required by Physics
 - for developing new concepts/technologies

Each of these specific facilities should be identified in the corresponding **Physics section**, including their main characteristics

In AS&T section:

For each discussed facilities and new concept/technology

- Identification of the Key Accelerator Research Area (KARA)
- Identification of related needed major « sub-infrastructures », if relevant
- Assessment of State of Development (possibly with a schedule)
- > Assessment of Remaining Major Issue

Each of the specific facilities have to identify a **contact person** for " accelerator science and technology", in charge of corresponding subsection

Accelerator Science and Technology

Proposed subsections

- Energy Frontier Challenges
- Intensity Frontier Challenges
- Organization of Accelerator R&D for HEP in Europe
 - Accelerator **R&D** coordination and collaborative programmes
 - Education and Training
 - Relation with industry
 - Synergies with other fields of science
 - Applications to societal Challenges

Example for Energy Frontier Challenges

- > Introduction
- > High Energy Hadron Colliders (incl. ions)
 - ➢ LHC (14 TeV)
 - > HL-LHC
 - > HE-LHC (or VLHC?)
- > High Energy Lepton Colliders
 - *ILC*
 - CLIC
 - Muon Collider
 - Plasma accelerators
- High Energy Hadron(ion)-Lepton Collider
 - eRHIC?
 - LHeC

Example for Intensity Frontier Challenges

- > Introduction
- > High Intensity v facilities
 - Super-beams
 - β-Beams
 - v-Factories
- > High luminosity Flavor factories
 - *\$\phi_Factories*
 - *τ/c-factories*
 - B-Factories
- > High intensity single beams
 - e, μ, K, p(pbar), n-beams

Accelerator Science and Technology

<u>Other source of inputs (whenever not available from (or complementary to)</u> <u>organized facility projects)</u>

ESGARD committee (i.e. EUAccelerator R&D projects...)

> TIARA :

- general KARA document already exists
- Several surveys to come
 - Education&Training in accelerator science and technology
 - Accelerator R&D infrastructures
- Interview of selected key people (could be done jointly with other sections)
 - From US (DoE(HEPAP)? and/or FNAL?)
 - From Asia (ACFA? and/or KEK?)

Written contributions from the community

Essential that

- I am the NOT the only responsible person in the PG for AS&T section!
- We can form a committee with the contact people for editing the Briefing Book section on AS&T

ESGARD developed and implemented a strategy to promote Accelerator R&D with the incentive of the EC Framework Programme within ERA 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2105 Accelerator FP7 FP6 R&D CARE **3** Networks (e, v, p)**EuCARD** CARE SRF **EuCARD** (SRF) CARE **PHIN EuCARD (SRF, ANAC)** CARE **HIPPI EuCARD** (SRF, ColMat) CARE NED **EuCARD** (HFM) **HL-LHC SLHC-PP** HiLumi **DS: ILC+CLIC EUROTEV ILC-HiGrade** (PP) **DS:** Neutrino β-beam **EURISOL** Scoping **DS-EuroNu** DS vFact study e in plasma **EUROLEAP EuCARD** (ANAC) **SuperB EuCARD** (ANAC) R&D-RI & program TIARA **Altogether EC has partially financed projects in FP6 and FP7** with a total budget of ~197 M€ (60 M€ from EC)

The use of Accelerators: much beyond HEP

The development of state of the art accelerators is essential for many many fields of science (fundamental, applied or industrial)

Research accelerators

Particle Physics, Nuclear Physics, Research fields using light source, Research fields using spallation neutron sources, Study of material for fusion, Study of transmutation...

In past 50 years, about 1/3 of Physics Nobel Prizes are rewarding work based on or carried out with accelerators

This « market » represents ~15 000 M€ for the next 15 years, i.e. ~1 000M€/year

Clinical accelerators

Industrial accelerators

 radiotherapy, electron therapy, hadron (proton/ion)therapy...

 ion implanters, electron beam and X-ray irradiators, radioisotope production...

This market represents ~3000M€/year and is increasing at a rate of ~10% /year