PHIN JRA

Charge production with Photo-injectors

Andrea Ghigo

Institute	Acronym	Country	Coordinator	Contact	Associated
CCLRC Rutheford Appletone Lab. (22)	CCLRC-RAL	UK	P. Norton	G.Hirst	
CERN Geneva (19)	CERN	CH	H. Haseroth	R.Losito	
CNRS-IN2P3 Orsay (3)	CNRS-LAL	F	T. Garvey ??	G. Bienvenu	CNRS
CNRS Lab. Optique Appl. Palaiseau (3)	CNRS-LOA	F	T. Garvey ??	V. Malka	CNRS
ForschungsZentrum ELBE (10)	FZR-ELBE	D	J. Teichert	J. Teichert	
INFN-Lab. Nazionali di Frascati (11)	INFN-LNF	I	S. Guiducci	A. Ghigo	INFN
INFN- Milan (11)	INFN-MI	I	C. Pagani	I. Boscolo	INFN
Twente University- Enschede (13)	TEU	NL	J.W.J. Verschuur	P.Van der Slot	

CERN Photo-cathode preparation

Mesure de la hauteur du profil

- Co-Deposition setup evaluated
- Te absolute thickness calibration
- Calibration of quartz measurements

Profilometer VEECO DEKTAK 6M

Electron beam in DC gun, from Cs₂Te photocathode

- co-evaporation technique:
 - simultaneous evaporation of Cs and Te onto Cu substrate
 - observation of film growth with two independent deposition monitors
- transfer of cathode into DC gun (under high vacuum)
 - 80 kV DC gun operation,
- laser 266 nm, pulse width 5 ns, repetition rate 10 Hz
- e-current measured with wall current monitor
 - quantum efficiency measured: 6%

e-beam on scintillation screen

photocathode No. 166 (Dec. 2006)

CERN CTF3 Photoinjector installation

LAL-CERN RF Gun

CCLRC/RAL CTF3 Laser system schematic

CTF3 Laser System

Pulse phase coding

- •Fibre modulation, based on telecoms technology, is fast but lossy and limited in average power
- •Measurements on the High Q system suggest 10dB loss before the preamp

results in <3dB output reduction

- •Delay can be adjusted by varying the fibre temperature (~0.5ps/°C)
- •Attenuation can be controlled by varying the fibre bending losses

INFN-SPARC laser system

A Ti:Sa TW-class laser is used to drive the SPARC RF-gun. The flat top pulse shape is achieved using two steps:

- the Dazzler or LC-SLM for Amplitude and phase modulation in IR before the amplifier
- UV pulse shaper for amplitude modulation to get shorter rise time

Longitudinal Pulse Shaping

Amplifier

DAZZLER

Massimo Petrarca

SPARC laser system

@

LNF

ъ.

into amplifier From oscillator Dazzler & LC-SLM INFN LNF& Mi 1100 -Cross-correlation 1000 -900 intensity [a.u] Intensity au. 700 -600 -300 -0.2 -200 -100 -0.0 time (ps) time [ps]

Shaping device + custom UV pulse shaper

-The UV stretcher was designed to lengthen the laser pulse up to 20 ps.

-In the Fourier plane an amplitude filter, such as an iris, can be applied to cut the tails of an almost square spectrum produced by the DAZZLER or

LC-SLM

Flat top vs gaussian pulse shape on electron

beam emittance

DAZZLER

- Compact
- Easy alignment
- Contemporary phase and amplitude modulation
- Losses within 50%
- Resolution = 0.3 nm
- Slow optimization

LC-SLM

- Not-compact
- Tricky alignment
- Phase or amplitude modulation
- Losses within 50%
- Resolution better than 0.1 nm
- Fast optimization

Development of a SCRF Photoinjector high brightness & high average current

Supported by EU
within CARE/PHIN
and the German BMBF
with DESY, BESSY, MBI

Preparation Chamber for the Photo Cathodes

- New clean room (Class 1000), independent from gun
- Ultra high vacuum (P < 10-9 mbar)
- Measurement of Q.E.
 - 262nm laser
 - Q.E. during deposition
 - life time
 - distribution scan
- Controlled by computer

Evaporators and thickness monitors

- Evaporators
 - 87 mm from the cathode
 - four boats, easy to change
 - Cesium source SAESGetters
- manually manipulated
 - monitored in a precision of 5μm
- two rate / thickness monitor
 - precise of 0.01 Å/s, 0.01Å
 - 36mm away from the
 - cathode
 - calibrated before experiment

Cavity Treatment

Tuning TM₀₁₀ π-mode to calculated profile (+0.6 -1 +1 -1) by using tuning plates matched to cell shape (push / pull cells)

Cathode cooling unit assembly

FZD-SC Photo-Injector installation Assembly of the SRF gun in the clean room in FZD in spring 2007

LOA Plasma Photoinjector:

Experimental setup for energy – energy spread measurements

Comparison of the two spectrometer magnets

B=0.41 T

B=1 T

Previous Magnet home made, up to 100 MeV

Design of a new magnet up to 400 MeV

10 cm

Energy distribution improvements: The Bubble regime

Charge in the peak: 200-300 pC

From self-injection to external injection

Self-injection Threshold

Off axis injection due to laser intensity asymetry

Mg Photocathode Preparation & Diagnostics @Twente University

Mg preparation chamber interior

- Copper photocathode (left)
- Microbalance
- magnesium deposition setup
- CEM (turned) and wire meshes

- Preparation chamber for magnesium photocathodes completed
- Diagnostics for deposition rate (Microbalance) and charge emission (Channeltron Electron Multiplier) installed
- Electron multiplier tested in combination with fs IR pulses on copper => CEM saturated at all incident intensities
- Replacement diagnostics implemented based on wire mesh collector in combination with a capacitor => charge emission per fs IR pulse measurable
- Test in progress for Cu cathodes.

Preparation chamber & Ellipsometry on Cs₂Te Photocathodes

- To study the deposition process
- Optical method: photocathode stays inside, measurement device outside
- Real-time measurements register steps in the deposition process

