

Introduction to Linac4: parameters, layout, challenges

M. Vretenar 09.05.2007 BI Review

Linac4 and the new injectors

Linac4 will first inject into the PSB and then can be the first element of a new LHC injector chain. It will increase the beam brightness for the LHC, provide more beam to ISOLDE, increase the reliability.

Linac4 parameters

lon species Output Energy Bunch Frequency	H- 160 352.2	MeV MHz	H- tha 2 i par	H- particles and higher energy than Linac2 (160/50 MeV, factor 2 in $\beta\gamma^2$) allow accumulating more particles in the PSB.		
Max. Rep. Rate	2	Hz				
Beam Pulse Length	400	μs		Will re-use 352 MHz LEP		
Max. Beam Duty Cycle	0.08	%		RF components: klystrons,		
Chopper Beam-on Factor	62	%		waveguides, circulators.		
Chopping scheme:						
222 tran	2 operating modes: low duty					
Source current	80	mA		for LHC, high duty for a		
RFQ output current	70	mA		nign-power SPL for neutrino		
Linac pulse current	40	mA		physics in a second phase.		
N. particles per pulse	1.0	× 10 ¹⁴		Structures and klystrons		
Transverse emittance	0.4	π mm mrad		dimensioned for 50 Hz		
Max. rep. rate for accelera	iting strue	ctures 50 H	z	➢Power supplies and electronics dimensioned for 2 Hz.		

The Linac4 accelerator

The linac (86 m) is made of an ion source followed by a sequence of accelerating structures, with focusing quadrupoles and diagnostics.

	RFQ	Chopper line	DTL	CCDTL	SCL	
Energy	3.0	3.0	40	90	160	MeV
Frequency	352	352	352	352	704	MH
Current	70	40	40	40	40	mA
RF Power	1.0	-	3.9	6.4	12.5	MW
Klystrons	1	-	5	8	4	-
No. tanks	1	-	3	24	20	-
Length	5.95	3.7	13.4	25.2	28.0	m

Three structures are required for the main acceleration (3-160 MeV), to keep high RF efficiency.

Linac4 Layout

Linac4 R&D collaborations (2004-2007)

Network of collaborations for the R&D phase, via EU-FP6, CERN-CEA/IN2P3, ISTC (CERN-Russia), CERN-India and CERN-China agreements.

Preparation in view of future international participation to the construction of Linac4

Linac4 Schedule

- Preparation (contracts, material): 6/20
 Construction: 6/20
 Installation and commissioning: 2011
- >PSB upgrade:
- >Start-up with the new injector:

6/2007 - 6/2008 6/2008 - 12/2010 2011 11/2011 - 3/2012 4/2012

After the latest information on the building, will probably move by 1 year \rightarrow Linac installation and commissioning 9/2010-12/2011 PSB upgrade 10/2011-3/2012 Start-up 4/2012

The 3 MeV test stand in construction will be extended and used to test critical components.

1st critical deadline: building design (dimensions, electrical and cooling requirements) to be frozen by end September $2007 \rightarrow$ preliminary definition of all components on the machine!

Linac4 challenges

- 1. Main challenge of Linac4 is RELIABILITY (~6000 hours/year with fault rate comparable to Linac2, ~1.5% of scheduled beam time).
- 2. Control of EMITTANCE GROWTH is of paramount importance for clean PSB injection.
- 3. Careful LOSS CONTROL is important to prepare for the SPL mode of operation \rightarrow for 1 W/m distributed loss in SPL mode, losses lower than 0.1 W/m in PSB injection mode (at 160 MeV, 1.5*10⁻⁵/m loss rate).

Linac4 challenges for BI

2 conflicting requirements:

- Space charge (the main beam dynamics concern for a proton linac) imposes short distances between focusing elements.
- Control of emittance growth and of beam losses requires sophisticated diagnostics in the main part of the linac.
- \rightarrow Need of SPECIAL DIAGNOSTICS elements that fit in the short distances allowed by the beam dynamics.