LINAC-4 Instrumentation Review 9. May 2007

I.P.H.I. Beam Diagnostic Line

Patrick AUSSET for the IPHI / IN2P3 - CEA Team

Overview of the installation of IPHI at Saclay

Patrick AUSSET – Linac-4 Instrumentation Review –

Beam Diagnostics Line

- Energy spread measurement: 2 slits + 1 F.C.
- Transverse profiles:
- 1 W.S., optical measurements, backscattered protons
- Temperature measurements of the beam pipe (thermocouples)

Patrick AUSSET – Linac-4 Instrumentation Review –

<u>Vacuum</u>: $P_{moyen} = 6 \times 10^{-6} Pa$

- 1 dry pump 12.5 m3/h , 1 T.M.P. 150 I /s
- 3 ion pumps 400 I /s ,
- 1 P.P. 30 m³/h , 1 T.M.P. 360 I /s
- 8 gauges couples «Pirani Penning»

Beam Dynamics in the IPHI diagnostics line

Beam dynamics description report on E.D.M.S. (Jean Louis Coacolo)

- Beam dynamics optimization ("Tracewin" BETA). Beam parameters at the entrance:
- "Toutatis". Mean energy and intensity of the beam: 3.015 MeV 99,4 mA.
- Heat deposition on the beam stopper simulation:
- optimization of the distance last Qpôle entrance of the beam stopper / diameter of the vacuum pipe at the entrance of the beam stopper and its length
- Description of the emittance measurement method
- Description of the energy spread measurement method
- Steerers determination

Beam Dynamics in the IPHI diagnostics line

Beam Diagnostics Line: Intensity Measurements

Patrick AUSSET – Linac-4 Instrumentation Review –

Beam Diagnostics Line: Beam Position Measurements

Beam Diagnostics Line: Beam Position Measurements

Patrick AUSSET – Linac-4 Instrumentation Review –

Treviously tested (2002) on Tane

WIRE SCANNER mounted in the diagnostics beam line of IPHI

Pulsed mode operation of SILHI:

- Pulse duration: 1 ms
- Repetition rate: 1 s
- Beam current: 36 mA

- Step: 100 µm

May 09 th - 2007

Optical based measurements : Fluorescence

"Diagnostic box" 82 KeV 2 x10⁻⁵ faisceau globa ource File: image directe Foc Data Set: PROJEOC5BEL C Date:02 -Chi*2=77843.413 # of Data Points=38 5-29113436.81 Corr Coef=0.9 Degree of Freedom=37 1 5,0x aseLine: Constan

Proton Beam-Residual Gas Interaction (Hydrogen: 2.10⁻³ Pa)

Patrick AUSSET – Linac-4 Instrumentation Review –

Optical based monitors: Luminescence analysis

Patrick AUSSET – Linac-4 Instrumentation Review –

Tuning of the low energy beam transfer line

Beam tuning at the entrance of the RFQ by mean of residual gas fluorescence analysis

Patrick AUSSET – Linac-4 Instrumentation Review –

Beam Diagnostics Line: Beam Energy measurement

Beam Diagnostics Line: Energy spread measurement

<u>Resolution</u>: depends on aperture of the slits and intensity of the beamlet: ± 10 keV foreseen.

Beam Diagnostics Line: Energy spread measurement

Intensity of the current measured by the Faraday Cup

Beam Diagnostics Line: Energy spread measurement

Evolution of the measurable energy spread as a function of aperture of the slits

Mechanical design : Nickel 201 cone Length = 1,6m. (thickness 3 mm) . Permanent densitien 120 W/cm² T = rightly 150 ° C

- •Beam energy deposition 120 W/cm² , T _{max} nickel : 150 ° C
- Pressurized water cooled refrigeration system : 5 bar, débit 300 l/mn, ΔT = 15 °C.

Patrick AUSSET – Linac-4 Instrumentation Review –

Beam Diagnostics Line: Beam Stopper

Beam stopper

Patrick AUSSET – Linac-4 Instrumentation Review –

IPHI beam Diagnostics Line

Patrick AUSSET – Linac-4 Instrumentation Review –

