Technology and Market Trends „,a pseudo-random walk"

The Technology defines what is feasible in computing

The Market defines what is affordable in computing

The infrastructure boundary conditions define what is implementable in computing

Some background

These CERN technology and market investigations are done in a general way, but need to take into account the boundary conditions coming from the High Energy Physics community and the CERN infrastructure.
\rightarrow Cost predictions for budget and resource planning

Basic features:

-- program performance is determined by integer calculations (80\%)
-- events are independent, thus no fine grain parallelism is needed
-- programs need >= 2GB of memory per job (=core)

Computer Center:

-- 10000 low-end servers installed
(dual CPU, >= 2GB memory per core, 1-6 TB local disks, 80\% 1Gbit - 20\% 10 Gbit, 24-36 disk in internal or external data disk trays)
-- 65000 cores, 62 PByte raw disk capacity, 50 PB data on tape
-- 3.5 MW power and cooling
-- replacement and purchase rate is about 1500 servers per year (in AND out)

Semiconductor Industry

Worldwide Revenue Ranking for the Top-25 Semiconductor Suppliers in 2011 (Revenue in Millions of U.S. Dollars)

$\begin{aligned} & 2010 \\ & \text { Rank } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 2011 \\ \text { Rank } \end{array}$	Company Name	$\begin{gathered} 2010 \\ \text { Revenue } \end{gathered}$	2011 Revenue	Percent Change	Percent of Total	Cumulative Percent
1	1	Intel	40,394	48,721	20.6\%	15.6\%	15.6\%
2	2	Samsung Electronics	28,380	28,563	0.6\%	9.2\%	24.8\%
4	3	Texas instruments	12,994	13,967	7.5\%	4.5\%	29.3\%
3	4	Toshiba	13,010	12,729	-2.2\%	4.1\%	33.4\%
5	5	Renesas Electronics Corporation	11,893	10,648	-10.5\%	3.4\%	36.8\%
9	6	Qualcomm	7,204	10,198	41.6\%	3.3\%	40.1\%
7	7	STMicroelectronics	10,346	9,735	-5.9\%	3.1\%	43.2\%
6	8	Hynix	10,380	9,293	-10.5\%	3.0\%	46.2\%
8	9	Micron Technology	8,876	7,365	-17.0\%	2.4\%	48.6\%
10	10	Broadcom	6,682	7,160	7.2\%	2.3\%	50.9\%
12	11	Advanced Micro Devices (AMD)	6,345	6,436	1.4\%	2.1\%	52.9\%
13	12	Infineon Technologies	6,319	5,312	-15.9\%	1.7\%	54.6\%
14	13	Sony	5,224	5,015	-4.0\%	1.6\%	56.3\%
16	14	Freescale Semiconductor	4,357	4,408	1.2\%	1.4\%	57.7\%
11	15	Elpida Memory	6,446	3,887	-39.7\%	1.2\%	58.9\%
17	16	NXP	4,028	3,831	-4.9\%	1.2\%	60.1\%
20	17	nVidia	3,196	3,608	12.9\%	1.2\%	61.3\%
26	18	ON Semiconductor	2,291	3,428	49.6\%	1.1\%	62.4\%
18	19	Marvell Technology Group	3,606	3,393	-5.9\%	1.1\%	63.5\%
15	20	Panasonic Corporation	4,946	3,390	-31.5\%	1.1\%	64.6\%
21	21	ROHM Semiconductor	3,118	3,187	2.2\%	1.0\%	65.6\%
19	22	MediaTek	3,553	2,952	-16.9\%	0.9\%	66.6\%
28	23	Nichia	2,190	2,936	34.1\%	0.9\%	67.5\%
22	24	Analog Devices	2,862	2,846	-0.6\%	0.9\%	68.4\%
23	25	Fujitsu Semiconductor Limited	2,757	2,742	-0.5\%	0.9\%	69.3\%
		All Others	96,073	95,610	-0.5\%	30.7\%	
		Total Semiconductor	307,470	311,360	1.3\%	100.0\%	

50% of the market is shared by only 10 companies

INTEL is the largest company

Source: IHS iSuppli March 2012
Worldwide semiconductor market revenues: 311 B in 2011 3-4 \% growth rate expected for 2012
04. May 2012

Computing Market in 2011

Type: number of units shipped, revenue growth rate, market revenue

Worldwide Smart Connected Device Shipments, 2010-2016 (Unit Millions)

In April 2002 the 1 billionth PC was shipped (PC = desktop+notebook+server) 2 billion until 2007 and about 3.5 billion right now
Compared to an estimated 1.5 billion installed PCs today (2 billion in 2015)
~6 billion mobile phone subscriptions worldwide at the end of 2011

Computing Market Trends

- The number of sold Smartphones is now higher than the amount of PCs sold
- Smartphones and tablets have the highest growth rates
\rightarrow Pushes the combination of mobile devices and cloud computing
- The netbook will disappear
- Ultabooks are a new category; INTEL estimate for 2012: 20-30 M units?!
- The server market has still healthy revenue growth rates, but last year the prices increased and less units were shipped
\rightarrow High Profits and Cost (HPC and Supercomputer)
\rightarrow Consolidation and efficiency improvements (virtualization) in large computer centres is affecting the server market

Market push from raw performance to power efficiency (execution and standby) \rightarrow few cores, simple processors, specialized processors (DSP, FPGA), SSD disks, NAND flash memory,......
"Dark Silicon"

Processor Technology

Main focus is to reduce leakage currents and reduce voltages
\rightarrow Energy efficiency
Add more functional units on the die (cores, GPUs, memory, IO, etc.) but keep surface area constant

Special technology necessarry for each shrinking step:
-90nm strained silicon
$\cdot 45 \mathrm{~nm}$ high-k metal gates
-22nm 3D tri-gate transistors

High-k metal gate transistors are strained, and
FinFET transistors have both strained silicon
and high-k metal gates

INTEL has produced the first 14 nm samples in the lab
But the current optical immersion-lithography (193nm) is in principle not capable of producing 14 nm structures
extreme ultraviolet lithography is needed \rightarrow very complicated, expensive, not all problems solved yet, 2015 target will be tight

Intel Server Microarchitecture Roadmap

Intel 12-18 month ahead of the competition: 22 nm Ivy Bridge processors released AMD and Nvidia had/have some problem with their 28 nm processes (yield and general processing with TSMC)

A Fab for 10 nm structure production will cost $\sim 10 \mathrm{~B}$; only very few companies will be able to effort this

Applied Material, company in the 'background' provides tools, machinery and expertise for chipmakers; INTEL and AMD (TSMC, GlobalFoundries)

Multi-Core I

Linear increase, about +2 every second year

Processors installed at CERN and general INTEL server processors (max cores at release date)

High end processors from the top-500 end 2011: Sun Niagara2: 8-cores, IBM Power7: 8-cores, Fujitsu Venus: 16-cores, AMD Interlagos: 16-cores

Important factor: memory per core, number of IO streams ("disk-spindles per core")

Multi-Core II

Slow increase in core count for the Mobile, PC and low end server market

First quad core processors in the Smartphone market, mid/end 2012 Low volumes

ISSCC

International Solid-State
Circuits Conference Trend Report 2011

Many Cores

Tilera: 64bit processors in a two dimensional array; multiple mesh networks; Just released 36-core 64bit processor version; Optimized for key-value access \rightarrow Facebook tests

INTEL: MIC Knights Corner, 50-60 cores; 48-core SCC 'cloud computer'

Calxeda: servers based on ARM Cortex-A9
Used by HP (Project Moonshot) , 288 processors in 4U
Adapteva: Epiphany IV processor, 64 RISC processors

Enterpoint: PCle co-processor board, Xilinx FPGA

ZiiLabs: 100-core system, Cortex-A9 + 96 StemCell Media Processing cores
Plurality: Hypercore processor, 256-cores, e.g wireless ingfrastructure
Neuromorphic processors e.g. silicon retina, ,Third Eye' motion detection, SyNAPSE project using memristors

What about: Larrabee, Cell processor, Kalray,

Chip Complexity

One has to take into account that on the processor chips about 50% of the Transistors are used for $\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3$ caches and the rest is distributed across the cores.

INTEL/AMD core : 100 million transistors
ARM core: 6 million transistors

Future Transistor Technology

Single phosphorus atom transistor on silicon

9 nm transistor based on nanotubes

Self-assembly of transistors based on biological molecules (immunoglobulin G antibody) and 5nm gold particles

Very active research area; frequently new results published, but will not effect the market in the <5 years time frame

From components to server costs

Cost calculations for a dual-processor server node:

- Processor cost is the dominant factor
- Fluctuating memory costs
- Server motherboard + chassis + power supply, relative constant costs
- Local disk space (HDD or SSD)

Boundary conditions

- Changing requirements from applications more memory, move from 1 to 10 Gbit network, more and faster local disk space
- 'rounding' - matching memory-per-core with number of memory DIMM slots on the motherboard, memory channels, DIMM size, power requirements, memory costs
- Power efficiency of the overall system
- Computer center limits:
ceiling on power and cooling, power and cooling density, space

Processors Costs

HS06= HEPSpec2006, integer SPEC benchmark
NO price improvements per processor
Step function for different generations

Ratio specint/specfloat:
$3.5+-0.5$ in 2006-2010
2.4 in 2011

Memory Costs

ECC registered server quality memory
Large fluctuations, volatile market coupled to NAND flash memory production

Server Costs

Expect a decrease in improvement speed when the technology reaches 14 nm structure sizes

Storage

DRAM Memory

- 4 companies have 91% market share: Samsung, Hynix, Micron, Elpida (bancrupt)
- 800 million units sold == 2 ExaBytes

NAND Memory

- 4 companies have 99\% market share: Samsung, Toshiba, Micron, Hynix
- 4000 million units sold == 19 ExaBytes

Solid-State-Disks

- > 50 companies
- 17 million units sold == 3 ExaBytes (included in the NAND memory numbers)

Hard-Disk-Drive

- 3 companies only: Western Digital 50\%, Seagate 39\%,Toshiba 11 \%
- 630 million units sold == 330 ExaBytes

Magnetic Tape

- 3 technologies : IBM, Oracle, LTO-consortium LTO has 90\% market share
- 27 million units sold == 20 Exabytes

Storage Feature Size Predictions

Lithography Roadmaps

- Minimum feature typically reduced by 12\% per year
- Intel/Micron has consistently exceeded ITRS goals

Storage Areal Density Evolution

Ref.: IBM April 2012 RFontana

Storage Areal Density Predictions

Annual Areal Density Growth Rate Scenarios

- HDD - 20\% to 25\% - Transition to New Technology, Sensor Output, Lithog
- NAND Flash - 25\% to 30\% - Lithography and Endurance
- TAPE - 40\% to 80\% -- No Lithography Issues, Mechanical Realities

Ref.: IBM April 2012 RFontana

DRAM Memory

- DRAM market revenue was 31 B in 2011
- Revenues dropped by -24\% in 2011 \rightarrow PC market changes, focus on NAND
- Moving to DDR4 (1866 MHz) in 2013, but focused on the high end server market
- Roadmaps to move to 3D transistors and hyper memory cube
- Problems to improve bandwidth and power consumption
\rightarrow multi-core and multi-threading memory bandwidth demand
- Scaling problems in the $2 x \mathrm{~nm}$ range (Lithography)

More price fluctuations expected

Jedec :Joint Electron Device Engineering Council \rightarrow developing open standards for the

Jedec DRAM Memory Roadmap

	2011	2012	2013	2014	2015	2016	2017	2018	2018	2020
Process	$3 \times \mathrm{nm}$		$2 \times \mathrm{H}$		$2 \times _$		$1 \times _\mathrm{H}$		$1 \times \mathrm{M}$	
DDR3	1600		1866							
ODR3L	1333		1600							
ODR4			1868	2133	2400	2667				
DDR4L						2400	2667	2667	2932	3200
Device		2 Gb								
Device				4 Gb						
Device							8 Gb			
Device										18 Gb
DMM	8 GB	16 GB		32 GB		64 GB	64 GB			128 GB
30S/TSV				DDR__2H	DOR4_4H	DDR4_8H				

Note

- DRAM speed: device rew speed, in Mbps.
- DIMM density. sweet spot density.
${ }^{*} 3 \mathrm{x}=30-39 \mathrm{nen}, 2 \mathrm{xH}=$ high 20 's nm, $1 \mathrm{xH}=$ high toen $\mathrm{nm}, 1 \mathrm{xM}=$ mid teen nm
- DDR4L 1.OV, TBD. microelectronics industry

Hard Disk Drive

- All drives today use perpendicular magnetic recording technology (PMR) Introduced in 2006
- Highest density in production: $740 \mathrm{Gbit} / \mathrm{in}^{2}$ for $2.5^{\prime \prime}$ disk and $620 \mathrm{Gbit} / \mathrm{in}^{2}$ for $3.5^{\prime \prime}$ disks 1 TBbyte per platter
- PMR reaches its limit at about 1 Tbit/in2
- Future technology is heat-assisted magnetic recording (HAMR) Seagate demonstrated 1 Tbit/in ${ }^{2}$ density
- HAMR is limit to 5-10 Tbit/in2 \rightarrow 30-60 Tbyte for a 3.5" disk large production level probably only in 2016-2017 very expensive technology
\rightarrow areal density growth rate slows down to 20-25\%
HDD space demand comes 50\% from cloud storage 2011 about 400 ExaBytes needed, but only 300 Exabytes delivered The demand will increase to one Zettabyte in 2016 (estimate)

\rightarrow Investment into production capacity: larger AND more disks to be shipped Higher demand than production rate = price decrease slowdown

Hard Disk Drive Costs I

Desktop disks: up to a factor 2 cheaper than server disks, not qualified for $24 * 7$ uptime \rightarrow Low MTBF !? Would be interesting to have a large scale investigation.......

Hard Disk Drive Costs II

Server quality HDDs: 3 years warranty, SATAT II, large cache, 24*7 operation, high MTBF (we actually measure 300000h while the vendor claims 1-1.5 million hours MTBF)

NAND and Solid State Disks

NAND flash market $\sim 30 \mathrm{~B}$, expectation is 10% growth rates (smartphones, tablets, ultrabooks)

- Today: 64Gbit in $25-28 \mathrm{~nm}$ structure sizes, 2 bit cells
- SanDisk+Toshiba prototype: 128Gbit, 19nm, 3bit MLC

Lithography problems below 20nm
Reduced endurance levels

More bits per cell + smaller structure sizes
= better GB/\$ and worse endurance

Solid-State-Disks

- SSD growth rate very high: from 17 m units 2011 to an expected 45m in 2012
- Lowest cost is 0.8 Eur/GB, but up to factor 20
 variation in cost factor 10-50 compared to HDD costs

For SSDs Euro/GB is actually the 'wrong' metric \rightarrow IOPS and sequential performance SSD cache + HDD backend

Future Storage Technologies

Trying to combine the advantages of HDD, Flash and DRAM
Non-volatile, Fast read and write, high endurance, High 2D or 3D density

IBM: racetrack memory moving domainwalls in a nanowire

Rice-University: 3D graphene storage based on creating cracks

- Samsung: combing graphene and silicon
- University Singapure: combining graphene with ferroelectrics
- University California/Taiwan: embedded 3nm silicon nanodots

Memristor first implementation expected in mid-2013 2008 predictions: replacing Flash in 2012, DRAM in 2014, HDD in 2016 !

PCRAM Phase change memory: 8Gbit 20nm PCR prototype device by Samsung in Nov 2011
MRAM already in production state, 16 Mbit chips, 130 nm structure size, non-volatile, 50 ns latency, ~3 million units shipped in 2011

Many innovative technologies, but no market relevance in the 3-5 years time frame

ITRS technology assessment Nov 2011

International Technology Roadmap for Semiconductors

Adiabatic versus disruptive technology changes
What happened to: holographic storage, Tesa-ROM, millipede,

Graphics

Separation of discrete graphics card, on-board GPUs and CPU-GPU integration
500 million graphic units sold in 2011

- 65 million graphics cards (5 million high end) 15 B\$ revenues

AMD and Nvidia use both the same foundry for the GPU production (TSMC).
 28 nm structure size production has started \rightarrow some production and yield problems

High end cards for gaming, engineering and computing $\quad \rightarrow \quad$ niche market Discrete graphics market under pressure from INTEL (Sandy-Bridge, Ivy-Bridge)

Focus is on energy efficiency and the mobile market
\rightarrow Tegra and Fusion
\rightarrow New Kepler from Nvidia with ,reduced' gaming and DP performance
New gaming model based on ,cloud' computing (OnLive Gaikai) High performance gaming on mobile devices: less graphics cards needed Discrete GPU costs will rather stabilize than heavily decline

Tape Storage

Tape market : 3.5 B\$ revenue per year

Today 3 main tape formats:

LTO	LTO-5	1.5 TB
IBM	3592JC	4.0 TB
Oracle	T10000T2	5.0 TB

LTO covers 90% of the market share

Archive Data in PB
Current media cost: $0.03-0.04$ Euro/GB 120,000

Solid technology roadmaps exists for all 3 competitors
\rightarrow 10-15 TB cartridges in 2017

Large scale backup

- tape
- tape use in cloud
- total

General Trends

'Exotic' Computing Technologies

> Implementation of AND/NOR gatters based on the movement of soldier crabs

$>$ Biocomputing using single-cell organism (plasmodium) e.g. Shortest way through a maze
> Chemical computing with traveling wavefronts of crystallization in supercooled sodium acetate
> Chemical oscillating patterns based on the Belousov-Zhabotinsky reaction
> Molecular Cryptosystem for Images by DNA Computing

> Some current breakthroughs is quantum computing: reaching 14 qbits, 100 microseconds coherence times, moving from atoms to nano-dots, but still 10 years away from a usefull production system

Summary

Moore's Law is still alive
(But Moore's Law and server costs have a complicated 'relationship')
Technology roadmaps are well advanced, approaching 10nm structure sizes will be challenging and very expensive (~ 2016)

Constant flow of very exciting bleeding edge research results, but no market relevance

Only very few companies are sharing the various markets (CPU, Disk, Memory)
The market is pushing for mobile device and energy efficiency
Continuing price/performance improvements over the next years, but indications for a change in the slope (less steep)

Prediction is very difficult, especially about the future.
Niels Bohr

