Volunteer Computing in the Next Decade

David Anderson

Space Sciences Lab University of California, Berkeley

4 May 2012

The consumer digital infrastructure (CDI)

Consumer

- 1.5 billion PCs
 - GPU-equipped
 - paid for by owner
- 5 billion mobile devices
- Commodity Internet

Organizational

- ~ 5 million
 cluster/cloud nodes
- supercomputers
- Research networks

Why not use the CDI for scientific computing?

- How to get access to PCs?
 - Poll: would you pay \$5/month to help
 - do cancer research
 - predict climate change
 - find the Higgs boson
 - about 5% of people answer "yes"
 - 5% of 1.5B = 75M

Many applications have two levels of parallelism

Don't need to have all your FLOPS in one cabinet or room

Examples

- Analysis of large data
 - radio/optical/gravitational instruments
 - particle colliders
 - genetic mapping and analysis
- Physical simulations
 - molecular, global, cosmic
- Biology-inspired computing
 - genetic optimization algorithms

Volunteer computing

- PC owners volunteer to let science projects use their computing resources
- Your PC can
 - simulate collisions for CERN
 - discover gravitational waves
 - discover binary pulsars
 - research human diseases
 - predict global climate change
 - etc.

BOINC: middleware for volunteer computing

- Supported by NSF since 2002
- Open source (LGPL)
- Based at University of California, Berkeley
- http://boinc.berkeley.edu

Issues handled by BOINC

- Heterogeneity
 - multiple platforms
- Handle untrusted, anonymous resources
 - Result validation
 - replication, adaptive replication
 - Credit: amount of work done by a host or user
- Consumer-friendly client

Supported resource types

- Desktops, laptops, cluster nodes, servers
 - Windows, Mac OS X, Linux, other Unix
 - Can use GPUs as well as CPUs
- Tablets and smart phones
 - Android
- Video game consoles
 - Sony Playstation 3

How it works

- Can attach to multiple projects
- Works "in the background"; configurable
- Interruptible

Volunteer computing today

- 700,000 active computers
 - 70% availability
 - 40% with usable GPUs
- 12 PetaFLOPS actual throughput
- Projects
 - CAS@home
 - IBM World Community Grid
 - Einstein@home
 - ... ~ 50 others

Cost

The cost of 10 TeraFLOPS for 1 year:

- CPU cluster: \$1.5M
- Amazon EC2: \$4M
 - 5,000 instances
- Volunteer: ~ \$0.1M

The future of the CDI

Positives

- Tech R&D is driven by the consumer market
- Ever-increasing numbers of devices

Concerns

- thin clients
- mobile (battery-powered) devices
- energy-saving mechanisms
- proprietary software environments
 - Apple iOS, Windows RT, Xbox, Playstation

The capacity of the CDI in 5 years

- Participation: 50M hosts?
- Processing
 - CPU: 50M * 1 TFLOPS = 50 ExaFLOPS
 - GPU: 50M * 20 TFLOPS = 1000 ExaFLOPS
- Storage:
 - 50M * 10 TB = 500 ExaBytes
- Network bandwidth
 - 50M * 100Mbps = 5 Petabit/sec

Using GPUs

- BOINC detects and schedules GPUs
 - NVIDIA, AMD, soon Intel
 - multiple/mixed GPUs
 - various hardware capabilities
 - various software capabilities (CUDA, OpenCL, CAL)
- Problems
 - non-preemptive GPU scheduling
 - no paging of GPU memory

Using VM technology

- CDI platforms:
 - 85% Windows
 - 7% Linux
 - 7% Mac OS X
- Developing/maintaining versions for different platforms is hard
- Even making a portable Linux executable is hard

BOINC VM support

- Create a VM image for your favorite environment
- Create executables for that environment

Data-intensive computing

- Examples
 - LHC data analysis
 - Square Kilometer Array
 - Wide-field survey telescopes
 - Genetic mapping and analysis
 - Storage of simulation results
- Performance issues
 - network
 - storage space on clients

Networking landscape

- Most PCs are behind NATs/firewalls
 - only use outgoing HTTP

Properties of clients

- Availability
 - hosts may be turned off
 - hosts may be unavailable by user preference
 - time of day
 - PC is busy or not busy
- Churn
 - The active life of hosts is exponentially distributed with mean ~100 days
- Heterogeneity
 - wide range of hardware/software properties

BOINC storage architecture

Storage applications

- Storage datasets
 - static
 - streaming
- Locality scheduling
- Archival of simulation results
- Data archival

Static dataset storage

Goal:

- Minimize turnaround time of queries against a dataset cached on clients
- Scheduling policies
 - whether to use a given host
 - how much data to store on a given host
 - should be proportional to its processing speed
 - update these decisions as hosts come and go

Streaming datasets

- Goal: maximize the window of data availability, subject to a bound on data loss
- Example: Square Kilometer Array (SKA)
 - ~1000 radio telescopes, 2 Gbps each
 - beam-forming via correlation
 - store data on clients in "stripes" across all telescopes
 - with 10M clients, 5 TB each, can store several years of data and perform a variety of analysis functions

Locality scheduling

- Each file in a large dataset is input for a large number of jobs
- Goal: process the dataset using the least network traffic
- Example: Einstein@home analysis of LIGO data

Locality scheduling

- Processing jobs sequentially is pessimal
 - every file gets sent to every client

Locality scheduling: ideal

- Each file is downloaded to 1 host
- Problems
 - Typically need job replication
 - Widely variable host throughput

Locality scheduling: compromise

- New hosts are assigned to slowest team
- Teams are merged when they collide
- Each file is downloaded to ~20 hosts

Organizational issues

- What's needed to operate an effective volunteer computing project?
 - learn about BOINC
 - sysadmin, DB admin, application porting
 - publicity/marketing: web, media
 - provide a continuous supply of jobs
- Most research projects can't do all of these

Umbrella projects

- One project serves many scientists
- Examples
 - CAS@home (Chinese Academy of Scientists)
 - World Community Grid (IBM)
 - U. of Westminster (desktop grid)
 - Ibercivis (Spanish consortium)

How to use volunteer computing

- Think about future computing needs
 - what can be mapped to volunteer computing?
 - how could you use unlimited processing power?
- Think about your organizational structure
 - mobilize at the appropriate level
- Plan and gather resources
 - include in your next grant proposal

Conclusion

- Volunteer computing is the shortest path to ExaFLOPS computing
- It's usable for many applications
- It enables breakthrough research
- It requires a leap of faith