
GPUs in Gravitational-Wave
Data Analysis

Drew Keppel1,2

for the LIGO Scientific Collaboration
& Virgo collaboration

 3rd ASPERA Computing and Astroparticle Physics Workshop
Hannover, Germany

2012-05-03

1: Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik
2: Leibniz Universität Hannover

1

LIGO-G1200381

LSC And Virgo GPU Contributors

Abilene Christian University

Josh Willis

AEI

Carsten Aulbert, Oliver
Bock, Tito Dal Canton,
Heinz-Bernd Eggenstein,
Drew Keppel, Badri
Krishnan, Bernd
Machenschalk, Karsten
Wiesner

Canadian Institute of
Theoretical Astrophysics

Kipp Cannon

Eötvös Loránd University

Máté Nagy

Syracuse University

Duncan Brown, Alexander
Nitz

Tshinghua University

Zhihui Du, Yuan Liu

Università degli Studi “Carlo
Bo” di Urbino

Riccardo Sturani

The University of Birmingham

Ben Aylott

University of Western
Australia

David BLair, Shin Kee
Chung, Amitava Datta,
Shaun Hooper, Linqing Wen

Wigner Research Centre for
Physics

Debreczeni Gergely

GW Interferometers

Pumped up Michelson
Interferometers at their core

sensitive to differential
displacements

3

Photo Credits: LHO and LLO images courtesy of LIGO Lab. Virgo image courtesy of
Eurelios . GEO600 image courtesy of Albert Einstein Institute Hannover and Deutsche
Luftbild, Hamburg.

LIGO Livingston
Observatory

LIGO Hanford
Observatory GEO600

Virgo

GW Detector Network

Era of the first
generation of
interferometric detectors
has ended

upgrades underway to
second generation
designs

Exception: GEO600
operating in
“astrowatch” mode

4

Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge
of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.

GW Signals From Inspiraling
Compact Binaries

neutron star and/or black
hole binaries

Most promising source for
second generation detectors

10s of detections
expected each year

Characterized by a
“chirping” signal

5
Illustration Credit: Dana Berry of NASA GSFC.

∆t = (5M)−5/3
�

5

8πf

�8/3

Frequency Band
(Hz)

Duration
(s)

40 - 2048 ~25

10 - 2048 ~975

Searching For
Inspiral Signals: Single Detector Method

Matched filter used to search
for known waveforms

Overlap-Save algorithm
used to reduce
computational cost at
expense of latency

SNR = 1 IFFT

Non-gaussian data requires
something more

Signal-based vetoes reduce
effects of non-Gaussian
detector glitches

Chisq = 16 IFFTs

Load
Data

Condition
Data

Whiten
Data

Compute
SNR

Compute
Signal-Based

Vetoes

Create
Template

Filters

Create Triggers
from Time-Series

Searching For
Inspiral Signals: Single Detector Method

Matched filter used to search
for known waveforms

Overlap-Save algorithm
used to reduce
computational cost at
expense of latency

SNR = 1 IFFT

Non-gaussian data requires
something more

Signal-based vetoes reduce
effects of non-Gaussian
detector glitches

Chisq = 16 IFFTs

χ2 =
16�

i=1

|ρi − ρ/16|2

∆f1 ∆f2 ∆f3 ∆f4

f = 0 f = fNy

FIG. 1: A typical set of frequency intervals ∆fj for the case
p = 4. These intervals are narrowest where the detector is the
most sensitive, and broadest where it is least sensitive.

each of the p independent detectors are consistent with
a single value.

Begin by assuming that, using matched filtering as pre-
viously described, we have identified a time of arrival t0
and inverse distance D/d. The goal is to construct a
statistic which indicates if the filter output is consistent
with this signal.

We will do this by investigating the way in which z(t0)
gets its contribution from different ranges of frequencies.
To do this, we partition the frequency range f ∈ [0,∞)
into a set of p distinct subintervals ∆f1, · · · , ∆fp whose
union is [0,∞). The frequency intervals:

∆f1 = {f | 0 ≤ f < f1}
∆f2 = {f | f1 ≤ f < f2}
· · ·

∆fp−1 = {f | fp−2 ≤ f < fp−1}
∆fp = {f | fp−1 ≤ f < ∞}, (4.1)

will be defined by the condition that the expected signal
contributions in each frequency band from a chirp are
equal. (Note that one may also pick intervals which do
not satisfy this condition. In Section IX we show that
when suitably defined, the resulting statistic still has a
classical χ2 distribution for the case of Gaussian detector
noise.)

To define the frequency bands, it is helpful to introduce
a set of p Hermitian inner products (for j = 1, · · · , p)
defined in analogy to (3.1) by

(

A, B
)

j
=

∫

−∆fj∪∆fj

A∗(f)B(f)

Sn(f)
df. (4.2)

In each of these integrals, the range of integration is over
both the positive and negative frequencies. As discussed
following (3.1), since Sn(f) may be taken as infinite for
|f | greater than the Nyquist frequency fN , the effec-
tive upper limit of the final frequency interval ∆fp is
fN rather than ∞.

Since the frequency intervals don’t overlap, but cover
all frequency values, the sum of these inner products

(

A, B
)

=
p

∑

j=1

(

A, B
)

j
(4.3)

yields the inner product (3.1) defined earlier. The p dis-
tinct frequency bands are uniquely determined by the
condition that

choose ∆fj so that
(

T̃ , T̃)j =
1

p
. (4.4)

A typical set of frequency intervals in shown in Figure 1.
For given instrumental noise Sn(f) the frequency inter-

vals ∆fj depend upon the template T . However it may
be the case that many templates actually share the same
frequency intervals ∆fj . A good example of this is the
set of stationary-phase post-Newtonian templates, where
the amplitude is calculated in the first post-Newtonian
approximation, and the phase is calculated to higher or-
der [38, 39]. For these templates, the frequency intervals
are determined by

(T̃ , T̃)j =
1

p
(T̃ , T̃) (4.5)

∫

∆fj

f−7/3

Sn(f)
df =

1

p

∫ ∞

0

f−7/3

Sn(f)
df

provided that m1 and m2 lie in a range for which the
stationary phase approximation holds within the detector
band [46]. For this family of templates, all the templates
share the same bands ∆fj.

The SNR (3.2) is an integral over all frequencies, and
can be written as a sum of contributions from each of the
p different bands,

z =
p

∑

j=1

zj with zj ≡ (Q̃, s̃)j . (4.6)

The expected values of zj and its square are computed
using the same techniques as before, and give

〈zj〉 =
1

p

D

d
, and

〈z2
j 〉 =

1

p
+

1

p2

(D

d

)2
(4.7)

In the absence of a signal (take d → ∞) one finds

〈zj〉 = 0 and 〈z2
j 〉 =

1

p
. (4.8)

This suggests an obvious statistical test to see if the signal
is consistent with the model.

Consider the p quantities defined by

∆zj ≡ zj −
z

p
. (4.9)

These are the differences between the SNR in the band
∆fj , and the SNR that would be anticipated [47] in that
band, based on the total measured SNR in all bands. By
definition, these differences sum to zero

n
∑

j=1

∆zj = 0 (4.10)

and their individual expectation values vanish

〈∆zj〉 = 0. (4.11)

5

−5

0

5

z 1(t
)

−5

0

5

z 2(t
)

−5

0

5

z 3(t
)

−5

0

5

z 4(t
)

Simulated Chirp (SNR = 9.2)

−5

0

5

−5

0

5

−5

0

5

−5

0

5
Spurious Event (SNR = 8.7)

High freq filter

t = t0 t = t0

TIME TIME

Figure Credit: B. Allen, Phys. Rev. D 71, 062001 (2005)

Searching For
Inspiral Signals: Single Detector Cost

Full BNS Search in Second
Generation Detectors

template banks made up
of few x 105 waveforms

waveforms have few x 106
samples

~100 GFlops needed to
produce SNR data in real
time (with a latency of
~15 minutes)

~10x more including
Chisq veto calculation

Smart algorithm designs can
reduce computational cost
and memory footprint

8

Speed of
221-length FFTs

of units for
real time

processing

ATLAS CPU Core
@3GFlops ~10

NVIDIA C2050s
@200GFlops

~1*

*Neglecting memory restrictions

GPU Acceleration Efforts:
 The FFT &
 Chisq Calculation

Porting just the FFT
routines of “lalapps_inspiral”

Limited by the
transferring data to and
from GPU for each FFT

Porting also the Chisq
calculation of
“lalapps_inspiral”

reduces number of
transfers to and from
GPU by 8x

9

lalapps_inspiral w/ Execution Time
(seconds)

CPU FFT 480

CUDA FFT 164

CPU FFT and
CPU CHISQ

1530

CUDA FFT and
CPU CHISQ

895

CUDA FFT and
CUDA CHISQ

188

Limited by:

other CPU operations

memory transfers between to and from GPU

Restructuring code necessary for obtaining full
GPU benefits

10

GPU Acceleration Efforts:
 “lalapps_inspiral” Limitations

78%

13%
2%7%

FFTW & Chisq

FFTW / cuFFT
Chisq
cuFFT & cuChisq
XLALBankVetoCCMat
Kernel
Others

13%

68%

4%
3%

12%

cuFFT & Chisq

28%

20%12%

40%

cuFFT & cuChisq 71%

18%

11%

GPU Operations

Memory Transfers
cuFFT
cuChisq

GPGPU Acceleration Efforts:
 GWtools

Based on OpenCL for portability

Achieved theoretical speedup for SNR
using Overlap-Save algorithm

Prototyping code for new algorithms

waveform generation

SNR calculation

signal-based vetoes

maximization and trigger
production

trigger clustering

Kernels developed will be
incorporated into other toolkits

11

Searching For
Inspiral Signals: Coherent Search

Coherently combine data from
detector network

Each sky location requires:

N time-shifts and IFFTs

recombination

~103-104 sky locations for
network of N advanced
detectors

Hundreds of GFlops become
few PFlops

A hierarchical approach
could reduce cost

12

Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge
of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.

Low-Latency Pipelines

High payoff could come
from prompt telescope
pointing

reduce latency as
much as possible

Ex: GstLAL based on
Gstreamer multimedia
framework and LSC’s
Algorithms Library

filter engine swappable
with different algorithms

GPU Acceleration Efforts:
 Low Latency With LLOID

Decreased latency
means increased
computational cost

Computational cost
reductions:

Multirate filtering

also implemented
within MBTA

Significance-Based
filtering

investigating benefit of
porting individual
tools to GPU

14
Figure Credit: K. Cannon, ..., DK, et al, ApJ 748, 136 (2012)

Waveforms approximated
by Summed Parallel IIR
filters

Computationally less
expensive than FIR
representation

1(complex) Add +
1(complex) Mul per
sample per IIR filter
(each is a single pole)

Hundreds of IIR
filters per waveform

15

GPU Acceleration Efforts:
 Low Latency With SPIIR

good target for
acceleration

PRO: Algorithm highly
parallelized

CON: requires
synchronized outputs

Sub-calculations
regrouped for
performance enhancements

synch events reduced
by number of samples
per batch

align number of filters
per segment with size
of warp

16

GPU Acceleration Efforts:
 Low Latency With SPIIR

be avoided. Then we can employ the PSR-IR method in each segment. As one segment can be
completely mapped into one warp and all the threads in one warp are implicitly synchronized
(zero overhead), the explicit synchronization between different steps of the parallel sum reduc-
tion can be avoided. At the same time, the parallel sum reduction can significantly reduce the
steps needed to calculate the partial sum of each segment. We also applied some efficient opti-
mizations such as loop unrolling and avoidance of warp divergence etc to further optimize the
implementation of parallel sum reduction on GPU to improve the performance (see for example
“reduction” in CUDA SDK code samples [45])

In order to take advantage of the implicit synchronization of one warp, the size of each
segment can not be larger than 32. Larger segment size needs less scarce shared memory to
store the partial sums. However, smaller segment size wastes fewer threads because filters of one
segment must be in the same group and so idle threads must be padded to groups of which the
size is not a multiple of the segment size. Consider the effect of both sides and the testing results,
we chose 16 as the size of each segment in our current implementation.

Nb
partial
sum

Nb
partial
sum

Parallel Sum
Reduction with

Implicit
Synchronization

N
bFilter Output

Parallel Sum
Reduction with

Implicit
Synchronization

N
bFilter Output

Figure 3: Diagram of filters reorganization for one SPIIR group and the mapping filters into CUDA threads to improve
the performance on GPU. (a) The relationship between one CUDA block and one SPIIR template in our implementation.
“Mul” means “Multiple” in this graph. (b) Every 16 filters of one group are organized into one segment. After the
16 filters in each segment produce their outputs, the PSR-IS method is employed to calculate the partial sum of each
segment.

4.3. Memory management for high I/O performance

Due to the different delays of the filters, each SPIIR filter has to access different segment
of input data from global memory of GPU to calculate its new values of SNR and χ2, so it is
difficult to utilize of the efficient coalesced memory access to achieve higher IO performance.

10

Choice of implementation

make GPU kernels for small tools or
large blocks?

Where is the line between CPU and GPU
computations?

Observed limits in SPIIR

few operations per data sample

more adds than muls

comparable to inefficiencies in FFT
algorithms

17

GPU Acceleration Efforts:
 Low Latency Limitations

Build a framework
with transparent
acceleration for
simple algorithms

Some investigations
compute filter output
103-106 times with
various parameters

Template bank
covering studies

parameter
estimation searches

Amount of
acceleration algorithm
dependent

memory transfers

generation of
waveforms

Could be used to
investigate and
implement new
pipelines

18

GPU Acceleration Efforts:
 Using Pyfft, Pycuda, Pyopencl

The End

Questions?

