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GW Interferometers

Pumped up Michelson 
Interferometers at their core

sensitive to differential 
displacements
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Photo Credits: LHO and LLO images courtesy of LIGO Lab. Virgo image courtesy of 
Eurelios . GEO600 image courtesy of Albert Einstein Institute Hannover and Deutsche 
Luftbild, Hamburg.
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GW Detector Network

Era of the first 
generation of 
interferometric detectors 
has ended

upgrades underway to 
second generation 
designs

Exception: GEO600 
operating in 
“astrowatch” mode
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Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge 
of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.



GW Signals From Inspiraling 
Compact Binaries

neutron star and/or black 
hole binaries

Most promising source for 
second generation detectors

10s of detections 
expected each year

Characterized by a 
“chirping” signal
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Illustration Credit: Dana Berry of NASA GSFC.
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Searching For
Inspiral Signals: Single Detector Method

Matched filter used to search 
for known waveforms

Overlap-Save algorithm 
used to reduce 
computational cost at 
expense of latency

SNR = 1 IFFT

Non-gaussian data requires 
something more

Signal-based vetoes reduce 
effects of non-Gaussian 
detector glitches

Chisq = 16 IFFTs
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Searching For
Inspiral Signals: Single Detector Method

Matched filter used to search 
for known waveforms

Overlap-Save algorithm 
used to reduce 
computational cost at 
expense of latency

SNR = 1 IFFT

Non-gaussian data requires 
something more

Signal-based vetoes reduce 
effects of non-Gaussian 
detector glitches

Chisq = 16 IFFTs
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FIG. 1: A typical set of frequency intervals ∆fj for the case
p = 4. These intervals are narrowest where the detector is the
most sensitive, and broadest where it is least sensitive.

each of the p independent detectors are consistent with
a single value.

Begin by assuming that, using matched filtering as pre-
viously described, we have identified a time of arrival t0
and inverse distance D/d. The goal is to construct a
statistic which indicates if the filter output is consistent
with this signal.

We will do this by investigating the way in which z(t0)
gets its contribution from different ranges of frequencies.
To do this, we partition the frequency range f ∈ [0,∞)
into a set of p distinct subintervals ∆f1, · · · , ∆fp whose
union is [0,∞). The frequency intervals:

∆f1 = {f | 0 ≤ f < f1}
∆f2 = {f | f1 ≤ f < f2}
· · ·

∆fp−1 = {f | fp−2 ≤ f < fp−1}
∆fp = {f | fp−1 ≤ f < ∞}, (4.1)

will be defined by the condition that the expected signal
contributions in each frequency band from a chirp are
equal. (Note that one may also pick intervals which do
not satisfy this condition. In Section IX we show that
when suitably defined, the resulting statistic still has a
classical χ2 distribution for the case of Gaussian detector
noise.)

To define the frequency bands, it is helpful to introduce
a set of p Hermitian inner products (for j = 1, · · · , p)
defined in analogy to (3.1) by

(

A, B
)

j
=

∫

−∆fj∪∆fj

A∗(f)B(f)

Sn(f)
df. (4.2)

In each of these integrals, the range of integration is over
both the positive and negative frequencies. As discussed
following (3.1), since Sn(f) may be taken as infinite for
|f | greater than the Nyquist frequency fN , the effec-
tive upper limit of the final frequency interval ∆fp is
fN rather than ∞.

Since the frequency intervals don’t overlap, but cover
all frequency values, the sum of these inner products

(

A, B
)

=
p

∑

j=1

(

A, B
)

j
(4.3)

yields the inner product (3.1) defined earlier. The p dis-
tinct frequency bands are uniquely determined by the
condition that

choose ∆fj so that
(

T̃ , T̃ )j =
1

p
. (4.4)

A typical set of frequency intervals in shown in Figure 1.
For given instrumental noise Sn(f) the frequency inter-

vals ∆fj depend upon the template T . However it may
be the case that many templates actually share the same
frequency intervals ∆fj . A good example of this is the
set of stationary-phase post-Newtonian templates, where
the amplitude is calculated in the first post-Newtonian
approximation, and the phase is calculated to higher or-
der [38, 39]. For these templates, the frequency intervals
are determined by

(T̃ , T̃ )j =
1

p
(T̃ , T̃ ) (4.5)

∫

∆fj

f−7/3

Sn(f)
df =

1

p

∫ ∞

0

f−7/3

Sn(f)
df

provided that m1 and m2 lie in a range for which the
stationary phase approximation holds within the detector
band [46]. For this family of templates, all the templates
share the same bands ∆fj.

The SNR (3.2) is an integral over all frequencies, and
can be written as a sum of contributions from each of the
p different bands,

z =
p

∑

j=1

zj with zj ≡ (Q̃, s̃)j . (4.6)

The expected values of zj and its square are computed
using the same techniques as before, and give

〈zj〉 =
1

p

D

d
, and

〈z2
j 〉 =

1

p
+

1

p2

(D

d

)2
(4.7)

In the absence of a signal (take d → ∞) one finds

〈zj〉 = 0 and 〈z2
j 〉 =

1

p
. (4.8)

This suggests an obvious statistical test to see if the signal
is consistent with the model.

Consider the p quantities defined by

∆zj ≡ zj −
z

p
. (4.9)

These are the differences between the SNR in the band
∆fj , and the SNR that would be anticipated [47] in that
band, based on the total measured SNR in all bands. By
definition, these differences sum to zero

n
∑

j=1

∆zj = 0 (4.10)

and their individual expectation values vanish

〈∆zj〉 = 0. (4.11)
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Searching For
Inspiral Signals: Single Detector Cost

Full BNS Search in Second 
Generation Detectors

template banks made up 
of few x 105 waveforms

waveforms have few x 106 
samples

~100 GFlops needed to 
produce SNR data in real 
time (with a latency of 
~15 minutes)

~10x more including 
Chisq veto calculation

Smart algorithm designs can 
reduce computational cost 
and memory footprint
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Speed of
221-length FFTs

# of units for 
real time 

processing

ATLAS CPU Core 
@3GFlops ~10

NVIDIA C2050s 
@200GFlops

~1*

*Neglecting memory restrictions



GPU Acceleration Efforts:
 The FFT &
 Chisq Calculation

Porting just the FFT 
routines of “lalapps_inspiral”

Limited by the 
transferring data to and 
from GPU for each FFT

Porting also the Chisq 
calculation of 
“lalapps_inspiral”

reduces number of 
transfers to and from 
GPU by 8x

9

lalapps_inspiral w/ Execution Time 
(seconds)

CPU FFT 480

CUDA FFT 164

CPU FFT and
CPU CHISQ

1530

CUDA FFT and
CPU CHISQ

895

CUDA FFT and 
CUDA CHISQ

188



Limited by:

other CPU operations

memory transfers between to and from GPU

Restructuring code necessary for obtaining full 
GPU benefits
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GPU Acceleration Efforts:
 “lalapps_inspiral” Limitations
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GPGPU Acceleration Efforts:
 GWtools

Based on OpenCL for portability

Achieved theoretical speedup for SNR 
using Overlap-Save algorithm

Prototyping code for new algorithms

waveform generation

SNR calculation

signal-based vetoes

maximization and trigger 
production

trigger clustering

Kernels developed will be 
incorporated into other toolkits
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Searching For
Inspiral Signals: Coherent Search

Coherently combine data from 
detector network

Each sky location requires:

N time-shifts and IFFTs

recombination

~103-104 sky locations for 
network of N advanced 
detectors

Hundreds of GFlops become 
few PFlops

A hierarchical approach 
could reduce cost
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Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge 
of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.



Low-Latency Pipelines

High payoff could come 
from prompt telescope 
pointing

reduce latency as 
much as possible

Ex: GstLAL based on 
Gstreamer multimedia 
framework and LSC’s 
Algorithms Library

filter engine swappable 
with different algorithms



GPU Acceleration Efforts:
 Low Latency With LLOID

Decreased latency 
means increased 
computational cost

Computational cost 
reductions:

Multirate filtering

also implemented 
within MBTA

Significance-Based 
filtering

investigating benefit of 
porting individual 
tools to GPU

14
Figure Credit: K. Cannon, ..., DK, et al, ApJ 748, 136 (2012)



Waveforms approximated 
by Summed Parallel IIR 
filters

Computationally less 
expensive than FIR 
representation

1(complex) Add +
1(complex) Mul per 
sample per IIR filter 
(each is a single pole)

Hundreds of IIR 
filters per waveform

15

GPU Acceleration Efforts:
 Low Latency With SPIIR



good target for 
acceleration

PRO: Algorithm highly 
parallelized

CON: requires 
synchronized outputs

Sub-calculations 
regrouped for 
performance enhancements

synch events reduced 
by number of samples 
per batch

align number of filters 
per segment with size 
of warp
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GPU Acceleration Efforts:
 Low Latency With SPIIR

be avoided. Then we can employ the PSR-IR method in each segment. As one segment can be
completely mapped into one warp and all the threads in one warp are implicitly synchronized
(zero overhead), the explicit synchronization between different steps of the parallel sum reduc-
tion can be avoided. At the same time, the parallel sum reduction can significantly reduce the
steps needed to calculate the partial sum of each segment. We also applied some efficient opti-
mizations such as loop unrolling and avoidance of warp divergence etc to further optimize the
implementation of parallel sum reduction on GPU to improve the performance (see for example
“reduction” in CUDA SDK code samples [45])

In order to take advantage of the implicit synchronization of one warp, the size of each
segment can not be larger than 32. Larger segment size needs less scarce shared memory to
store the partial sums. However, smaller segment size wastes fewer threads because filters of one
segment must be in the same group and so idle threads must be padded to groups of which the
size is not a multiple of the segment size. Consider the effect of both sides and the testing results,
we chose 16 as the size of each segment in our current implementation.

Nb
partial 
sum

Nb
partial 
sum

Parallel Sum 
Reduction with 

Implicit 
Synchronization

N
bFilter Output

Parallel Sum 
Reduction with 

Implicit 
Synchronization

N
bFilter Output

Figure 3: Diagram of filters reorganization for one SPIIR group and the mapping filters into CUDA threads to improve
the performance on GPU. (a) The relationship between one CUDA block and one SPIIR template in our implementation.
“Mul” means “Multiple” in this graph. (b) Every 16 filters of one group are organized into one segment. After the
16 filters in each segment produce their outputs, the PSR-IS method is employed to calculate the partial sum of each
segment.

4.3. Memory management for high I/O performance

Due to the different delays of the filters, each SPIIR filter has to access different segment
of input data from global memory of GPU to calculate its new values of SNR and χ2, so it is
difficult to utilize of the efficient coalesced memory access to achieve higher IO performance.
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Choice of implementation

make GPU kernels for small tools or 
large blocks? 

Where is the line between CPU and GPU 
computations?

Observed limits in SPIIR

few operations per data sample

more adds than muls

comparable to inefficiencies in FFT 
algorithms

17

GPU Acceleration Efforts:
 Low Latency Limitations



Build a framework 
with transparent 
acceleration for 
simple algorithms

Some investigations 
compute filter output 
103-106 times with 
various parameters

Template bank 
covering studies

parameter 
estimation searches

Amount of 
acceleration algorithm 
dependent

memory transfers

generation of 
waveforms

Could be used to 
investigate and 
implement new 
pipelines
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GPU Acceleration Efforts:
 Using Pyfft, Pycuda, Pyopencl



The End

Questions?


