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GVW INTERFEROMETERS

LIGO HANFORD

GEO600
OBSERVATORY

LIGO LIVINGSTON

VIRGO
OBSERVATORY

& PUMPED UP MICHELSON
INTERFEROMETERS AT THEIR CORE

& SENSITIVE TO DIFFERENTIAL
DISPLACEMENTS

Photo Credits: LHO and LLO images courtesy of LIGO Lab. Virgo image courtesy of
Eurelios . GEO600 image courtesy of Albert Einstein Institute Hannover and Deutsche
Luftbild, Hamburg.



GW DETECTOR NETWORK

ERA OF THE FIRST UPGRADES UNDERWAY TO
GENERATION OF SECOND GENERATION
INTERFEROMETRIC DETECTORS DESIGNS

HAS ENDED
EXCEPTION: GEOG600
OPERATING IN

“ASTROWATCH” MODE
Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge
of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.



GW SIGNALS FROM INSPIRALING
COMPACT BINARIES

g2 NEUTRON STAR AND/OR BLACK
HOLE BINARIES

MOST PROMISING SOURCE FOR
SECOND GENERATION DETECTORS

8 10S OF DETECTIONS

EXPECTED EACH YEAR

o CHARACTERIZED BY A

T 1T 1T 1T 171

“CHIRPING” SIGNAL : ' : '

FREQUENCY BAND DURATION
(HZz) (s)
5\ 8/3
.
10 - 2048 ~975

lllustration Credit: Dana Berry of NASA GSFC.



SEARCHING FOR
INSPIRAL SIGNALS: SINGLE DETECTOR METHOD

B2 MATCHED FILTER USED TO SEARCH
FOR KNOWN WAVEFORMS

o] OVERLAP-SAVE ALGORITHM
USED TO REDUCE
COMPUTATIONAL COST AT
EXPENSE OF LATENCY

Create
Template

@ SNR-=1IFFT Filors

8 NON-GAUSSIAN DATA REQUIRES
SOMETHING MORE

Compute
Signal-Based
Vetoes

Compute
SNR

Create Triggers
from Time-Series

B2 SIGNAL-BASED VETOES REDUCE
EFFECTS OF NON-GAUSSIAN
DETECTOR GLITCHES

L CHIsSQ = 16 IFFTs



SEARCHING FOR
INSPIRAL SIGNALS: SINGLE DETECTOR METHOD

® MATCHED FILTER USED TO SEARCH Afi  |Af2|Afs| Afa |

FOR KNOWN WAVEFORMS 7

0 fZIfNy

& OVERLAP-SAVE ALGORITHM
USED TO REDUCE
COMPUTATIONAL COST AT
EXPENSE OF LATENCY

= SNR =1 IFFT

8 NON-GAUSSIAN DATA REQUIRES
SOMETHING MORE

o] SIGNAL-BASED VETOES REDUCE
EFFECTS OF NON-GAUSSIAN
DETECTOR GLITCHES

L CHIsSQ = 16 IFFTs

Figure Credit: B. Allen, Phys. Rev. D 71, 062001 (2005)



SEARCHING FOR

INSPIRAL SIGNALS: SINGLE DETECTOR COST

s FULL BNS SEARCH IN SECOND
GENERATION DETECTORS

& TEMPLATE BANKS MADE UP
OF FEW X 105 WAVEFORMS

v WAVEFORMS HAVE FEW X 10°¢
SAMPLES

® ~100 GFLOPS NEEDED TO
PRODUCE SNR DATA IN REAL
TIME (WITH A LATENCY OF
~15 MINUTES)

B ~10X MORE INCLUDING
CHISQ VETO CALCULATION

s SMART ALGORITHM DESIGNS CAN
REDUCE COMPUTATIONAL COST
AND MEMORY FOOTPRINT
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GPU ACCELERATION EFFORTS:

IFEfE FFT &

CHISQ CALCULATION

PORTING JUST THE FFT
ROUTINES OF “lalapps_inspiral?”

LIMITED BY THE
TRANSFERRING DATA TO AND
FROM GPU FOR EACH FFT

PORTING ALSO THE CHISQ
CALCULATION OF
“lalapps_inspiral”

REDUCES NUMBER OF
TRANSFERS TO AND FROM
GPU BY 8X

LALAPPS_INSPIRAL W/

EXECUTION TIME

(SECONDS)

CPU FFT 480

CUDA FFT 164

CPU FFT AND 1530
CPU CHISQ

CUDA FFT AND 895
CPU CHISQ

CUDA FFT AND 188

CUDA CHISQ




GPU ACCELERATION EFFORTS:
“lalapps_inspiral” Limitations

& LIMITED BY:
& OTHER CPU OPERATIONS
e MEMORY TRANSFERS BETWEEN TO AND FROM GPU

& RESTRUCTURING CODE NECESSARY FOR OBTAINING FULL
GPU BENEFITS

GPU OPERATIONS

FFTW & CHISQ CcUFFT & CHISQ

B

FFTW / cUFFT
CHISQ

CUFFT & CcUCHISQ
XLALBANKVETOCCMAT
KERNEL

OTHERS

@ MEMORY TRANSFERS
¢ CUFFT
@ CcUCHIsSQ
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GPGPU ACCELERATION EFFORTS:

GWTOOLS

&g BASED ON OPENCL FOR PORTABILITY

& ACHIEVED THEORETICAL SPEEDUP FOR SNR
USING OVERLAP-SAVE ALGORITHM

& PROTOTYPING CODE FOR NEW ALGORITHMS

WAVEFORM GENERATION
SNR CALCULATION
SIGNAL-BASED VETOES

MAXIMIZATION AND TRIGGER
PRODUCTION

TRIGGER CLUSTERING

& KERNELS DEVELOPED WILL BE
INCORPORATED INTO OTHER TOOLKITS
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SEARCHING FOR
INSPIRAL SIGNALS: COHERENT SEARCH

o COHERENTLY COMBINE DATA FROM
DETECTOR NETWORK

EACH SKY LOCATION REQUIRES:

& N TIME-SHIFTS AND IFFTS

e RECOMBINATION

(" Sky Position B Sky Position A "\

~103-10%4 SKY LOCATIONS FOR

NETWORK OF N ADVANCED
DETECTORS

HUNDREDS OF GFLOPS BECOME
FEW PFLOPS

8 A HIERARCHICAL APPROACH
COULD REDUCE COST

Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge
of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.
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LOW-LATENCY PIPELINES

HIGH PAYOFF COULD COME
FROM PROMPT TELESCOPE

Buffer Oswo./_‘sﬂsﬁ gﬁgsortho
POINTING s e
® REDUCE LATENCY AS e A
MUCH AS POSSIBLE e e

Ex: GSTLAL BASED ON
GSTREAMER MULTIMEDIA
FRAMEWORK AND LSC’s
ALGORITHMS LIBRARY

M

16384 Hz

FILTER ENGINE SWAPPABLE
WITH DIFFERENT ALGORITHMS
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GPU ACCELERATION EFFORTS:
Low LATENCY WITH LLOID

o] DECREASED LATENCY
MEANS INCREASED
COMPUTATIONAL COST

o] COMPUTATIONAL COST
REDUCTIONS:

& MULTIRATE FILTERING

e ALSO IMPLEMENTED
WITHIN MBTA

& SIGNIFICANCE-BASED
FILTERING

o] INVESTIGATING BENEFIT OF
PORTING INDIVIDUAL
TOoOoLs TO GPU

Figure Credit: K. Cannon, ..., DK, et al, ApJ 748, 136 (2012)
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GPU ACCELERATION EFFORTS:
Low LATENCY WITH SPIIR

WAVEFORMS APPROXIMATED
BY SUMMED PARALLEL IIR
FILTERS

/

Inspiral )

COMPUTATIONALLY LESS
EXPENSIVE THAN FIR
REPRESENTATION

2 1(COMPLEX) ADD +
1 (COMPLEX) MUL PER
SAMPLE PER IIR FILTER
(EACH IS A SINGLE POLE)

Summed IIR Filters

(" 1IR Filters
|
|

\_

o] HUNDREDS OF IIR
FILTERS PER WAVEFORM
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GPU ACCELERATION EFFORTS:

Low LATENCY WITH SPIIR

GOOD TARGET FOR

ACCELERATION
® PRO: ALGORITHM HIGHLY - N
Template One SPIIR Group
PARALLELIZED |
—61:1% Template
e CON: REQUIRES I~ One segment One segment
h (16 filters) (16 filters)
SYNCHRONIZED OUTPUTS %
SUB-CALCULATIONS = e E £
= F|Iter Output = Fllter Output =
REGROUPED FOR E; 7 1 1 L L .
v
PERFORMANCE ENHANCEMENTS “12 & [pE— Er T eI
7N Synchronization Synchronization
@ SYNCH EVENTS REDUCED S e
BY NUMBER OF SAMPLES -HH Fiter - -
PER BATCH parta parta
(a) (b)
& ALIGN NUMBER OF FILTERS

PER SEGMENT WITH SIZE
OF WARP
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GPU ACCELERATION EFFORTS:

LOW LATENCY LIMITATIONS

&2 CHOICE OF IMPLEMENTATION

MAKE GPU KERNELS FOR SMALL TOOLS OR
LARGE BLOCKS?

WHERE IS THE LINE BETWEEN CPU AND GPU
COMPUTATIONS?

o OBSERVED LIMITS IN SPIIR

FEW OPERATIONS PER DATA SAMPLE
MORE ADDS THAN MULS

COMPARABLE TO INEFFICIENCIES IN FFT
ALGORITHMS
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GPU ACCELERATION EFFORTS:
USING PYFFT, PYCUDA, PYOPENCL

BUILD A FRAMEWORK
WITH TRANSPARENT
ACCELERATION FOR
SIMPLE ALGORITHMS

SOME INVESTIGATIONS
COMPUTE FILTER OUTPUT
103-10% TIMES WITH
VARIOUS PARAMETERS

e TEMPLATE BANK
COVERING STUDIES

e PARAMETER
ESTIMATION SEARCHES

AMOUNT OF
ACCELERATION ALGORITHM
DEPENDENT

8 MEMORY TRANSFERS

g GENERATION OF
WAVEFORMS

COULD BE USED TO
INVESTIGATE AND
IMPLEMENT NEW
PIPELINES
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THE END

QUESTIONS?



