

GPUS IN GRAVITATIONAL-WAVE DATA ANALYSIS

DREW KEPPEL^{1,2} FOR THE LIGO SCIENTIFIC COLLABORATION & VIRGO COLLABORATION

3RD ASPERA COMPUTING AND ASTROPARTICLE PHYSICS WORKSHOP HANNOVER, GERMANY 2012-05-03

I:Albert-Einstein-Institut, Max-Planck-Institut für Gravitationsphysik 2: Leibniz Universität Hannover

LIGO-G1200381

LSC AND VIRGO GPU CONTRIBUTORS

ABILENE CHRISTIAN UNIVERSITY

- JOSH WILLIS
- AEI

- CARSTEN AULBERT, OLIVER BOCK, TITO DAL CANTON, HEINZ-BERND EGGENSTEIN, DREW KEPPEL, BADRI KRISHNAN, BERND MACHENSCHALK, KARSTEN WIESNER
- CANADIAN INSTITUTE OF THEORETICAL ASTROPHYSICS
 - KIPP CANNON
- Eötvös Loránd University
 - MÁTÉ NAGY
- SYRACUSE UNIVERSITY
 - DUNCAN BROWN, ALEXANDER NITZ

- TSHINGHUA UNIVERSITY
 - ZHIHUI DU, YUAN LIU
- UNIVERSITÀ DEGLI STUDI "CARLO BO" DI URBINO
 - RICCARDO STURANI
- THE UNIVERSITY OF BIRMINGHAM
 - BEN AYLOTT
- UNIVERSITY OF WESTERN AUSTRALIA
 - David BLair, Shin Kee
 Chung, Amitava Datta,
 Shaun Hooper, Linqing Wen
- WIGNER RESEARCH CENTRE FOR PHYSICS
 - DEBRECZENI GERGELY

GW INTERFEROMETERS

LIGO HANFORD OBSERVATORY

GEO600

LIGO LIVINGSTON OBSERVATORY

int -

VIRGO

PUMPED UP MICHELSON INTERFEROMETERS AT THEIR CORE

SENSITIVE TO DIFFERENTIAL DISPLACEMENTS

Photo Credits: LHO and LLO images courtesy of LIGO Lab. Virgo image courtesy of Eurelios . GEO600 image courtesy of Albert Einstein Institute Hannover and Deutsche Luftbild, Hamburg.

GW DETECTOR NETWORK

ERA OF THE FIRST

ERA OF THE FIRST GENERATION OF INTERFEROMETRIC DETECTORS HAS ENDED

UPGRADES UNDERWAY TO SECOND GENERATION DESIGNS

EXCEPTION: GEO600 OPERATING IN "ASTROWATCH" MODE

Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.

GW SIGNALS FROM INSPIRALING COMPACT BINARIES

- NEUTRON STAR AND/OR BLACK HOLE BINARIES
- MOST PROMISING SOURCE FOR SECOND GENERATION DETECTORS
 - 10s of detections EXPECTED EACH YEAR
- CHARACTERIZED BY A "CHIRPING" SIGNAL

$$\Delta t = \left(5\mathcal{M}\right)^{-5/3} \left(\frac{5}{8\pi f}\right)^{8/3}$$

FREQUENCY BAND (HZ)	DURATION (S)
40 - 2048	~25
10 - 2048	~975

SEARCHING FOR INSPIRAL SIGNALS: SINGLE DETECTOR METHOD

- MATCHED FILTER USED TO SEARCH FOR KNOWN WAVEFORMS
 - OVERLAP-SAVE ALGORITHM USED TO REDUCE COMPUTATIONAL COST AT EXPENSE OF LATENCY
 - SNR = 1 IFFT
 - NON-GAUSSIAN DATA REQUIRES SOMETHING MORE
- SIGNAL-BASED VETOES REDUCE EFFECTS OF NON-GAUSSIAN DETECTOR GLITCHES
 - CHISQ = 16 IFFTS

SEARCHING FOR INSPIRAL SIGNALS: SINGLE DETECTOR METHOD

MATCHED FILTER USED TO SEARCH FOR KNOWN WAVEFORMS

- OVERLAP-SAVE ALGORITHM USED TO REDUCE COMPUTATIONAL COST AT EXPENSE OF LATENCY
- SNR = 1 IFFT
- NON-GAUSSIAN DATA REQUIRES SOMETHING MORE
- SIGNAL-BASED VETOES REDUCE EFFECTS OF NON-GAUSSIAN DETECTOR GLITCHES
 - CHISQ = 16 IFFTs

SEARCHING FOR INSPIRAL SIGNALS: SINGLE DETECTOR COST

- Full BNS Search in Second Generation Detectors
 - TEMPLATE BANKS MADE UP OF FEW X 10⁵ WAVEFORMS
 - WAVEFORMS HAVE FEW X 10⁶ SAMPLES
 - ~100 GFLOPS NEEDED TO PRODUCE SNR DATA IN REAL TIME (WITH A LATENCY OF ~15 MINUTES)
 - ~10x MORE INCLUDING CHISQ VETO CALCULATION
 - SMART ALGORITHM DESIGNS CAN REDUCE COMPUTATIONAL COST AND MEMORY FOOTPRINT

*NEGLECTING MEMORY RESTRICTIONS

GPU ACCELERATION EFFORTS: THE FFT & CHISQ CALCULATION

- PORTING JUST THE FFT ROUTINES OF "lalapps_inspiral"
 - LIMITED BY THE TRANSFERRING DATA TO AND FROM GPU FOR EACH FFT
 - PORTING ALSO THE CHISQ CALCULATION OF "lalapps_inspiral"
 - REDUCES NUMBER OF TRANSFERS TO AND FROM GPU BY 8X

LALAPPS_INSPIRAL W/	Execution Time (seconds)
CPU FFT	480
CUDA FFT	164
CPU FFT AND CPU CHISQ	1530
CUDA FFT AND CPU CHISQ	895
CUDA FFT AND CUDA CHISQ	188

GPU ACCELERATION EFFORTS:

"lalapps_inspiral" Limitations

- LIMITED BY:
 - OTHER CPU OPERATIONS
 - MEMORY TRANSFERS BETWEEN TO AND FROM GPU
- RESTRUCTURING CODE NECESSARY FOR OBTAINING FULL GPU BENEFITS

GPGPU ACCELERATION EFFORTS: GWTOOLS

- BASED ON OPENCL FOR PORTABILITY
- ACHIEVED THEORETICAL SPEEDUP FOR SNR USING OVERLAP-SAVE ALGORITHM
- PROTOTYPING CODE FOR NEW ALGORITHMS
 - WAVEFORM GENERATION
 - SNR CALCULATION
 - SIGNAL-BASED VETOES
 - MAXIMIZATION AND TRIGGER PRODUCTION
 - TRIGGER CLUSTERING
- KERNELS DEVELOPED WILL BE INCORPORATED INTO OTHER TOOLKITS

SEARCHING FOR INSPIRAL SIGNALS: COHERENT SEARCH

- COHERENTLY COMBINE DATA FROM DETECTOR NETWORK
- EACH SKY LOCATION REQUIRES:
 - **N** TIME-SHIFTS AND IFFTS
 - RECOMBINATION
- ~10³-10⁴ SKY LOCATIONS FOR NETWORK OF N ADVANCED DETECTORS
- HUNDREDS OF GFLOPS BECOME FEW PFLOPS
 - A HIERARCHICAL APPROACH COULD REDUCE COST

Photo Credit: Satellite data courtesy Marc Imhoff of NASA GSFC and Christopher Elvidge of NOAA NGDC. Earth image by Craig Mayhew and Robert Simmon, NASA GSFC.

LOW-LATENCY PIPELINES

- HIGH PAYOFF COULD COME FROM PROMPT TELESCOPE POINTING
- REDUCE LATENCY AS MUCH AS POSSIBLE
- Ex: GSTLAL BASED ON GSTREAMER MULTIMEDIA FRAMEWORK AND LSC'S ALGORITHMS LIBRARY

100

FILTER ENGINE SWAPPABLE WITH DIFFERENT ALGORITHMS

GPU ACCELERATION EFFORTS: LOW LATENCY WITH LLOID

- DECREASED LATENCY MEANS INCREASED COMPUTATIONAL COST
- COMPUTATIONAL COST REDUCTIONS:
 - MULTIRATE FILTERING
 - ALSO IMPLEMENTED WITHIN MBTA
 - SIGNIFICANCE-BASED FILTERING
- INVESTIGATING BENEFIT OF PORTING INDIVIDUAL TOOLS TO GPU

GPU ACCELERATION EFFORTS: LOW LATENCY WITH SPIIR

- WAVEFORMS APPROXIMATED BY SUMMED PARALLEL IIR FILTERS
- COMPUTATIONALLY LESS EXPENSIVE THAN FIR REPRESENTATION
 - 1 (COMPLEX) ADD + 1 (COMPLEX) MUL PER SAMPLE PER IIR FILTER (EACH IS A SINGLE POLE)
 - HUNDREDS OF IIR FILTERS PER WAVEFORM

GPU ACCELERATION EFFORTS: LOW LATENCY WITH SPIIR

GOOD TARGET FOR ACCELERATION

- PRO: ALGORITHM HIGHLY PARALLELIZED
- CON: REQUIRES SYNCHRONIZED OUTPUTS
- SUB-CALCULATIONS REGROUPED FOR PERFORMANCE ENHANCEMENTS
 - SYNCH EVENTS REDUCED BY NUMBER OF SAMPLES PER BATCH
 - ALIGN NUMBER OF FILTERS PER SEGMENT WITH SIZE OF WARP

GPU ACCELERATION EFFORTS: LOW LATENCY LIMITATIONS

CHOICE OF IMPLEMENTATION

- MAKE GPU KERNELS FOR SMALL TOOLS OR LARGE BLOCKS?
- WHERE IS THE LINE BETWEEN CPU AND GPU COMPUTATIONS?
- OBSERVED LIMITS IN SPIIR
 - FEW OPERATIONS PER DATA SAMPLE
 - MORE ADDS THAN MULS
 - COMPARABLE TO INEFFICIENCIES IN FFT ALGORITHMS

GPU ACCELERATION EFFORTS: USING PYFFT, PYCUDA, PYOPENCL

- BUILD A FRAMEWORK WITH TRANSPARENT ACCELERATION FOR SIMPLE ALGORITHMS
- Some investigations COMPUTE FILTER OUTPUT 10³-10⁶ TIMES WITH VARIOUS PARAMETERS
 - TEMPLATE BANK COVERING STUDIES
 - PARAMETER ESTIMATION SEARCHES

- AMOUNT OF ACCELERATION ALGORITHM DEPENDENT
 - MEMORY TRANSFERS
 - GENERATION OF WAVEFORMS
- COULD BE USED TO INVESTIGATE AND IMPLEMENT NEW PIPELINES

THE END

QUESTIONS?