William Dunne

Outline

HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

 $\sigma_{c\bar{c}}$ Principle $D^* \to k\pi$ Extraction

Extraction Comparison $F_2^{c\bar{c}}$

Measurement Extraction
Systematic
Scaling

Outlook

Charm at HERA II

William Dunne

University of Glasgow

April 4, 2006

William Dunne

Outline

Introduction
HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

 $\sigma_{c\bar{c}}$ Principle $D^* \to k\pi$ Extraction

Comparison

-cc 2 Measurement Extraction Systematics Scaling Introduction

- HERA
- ZEUS
- Why $F_2^{c\bar{c}}$?
- Definition
- Scattering

- $\sigma_{c\bar{c}}$
 - Principle
 - \bullet $D^* \rightarrow k\pi\pi$
 - Extraction
 - Comparison

- Measurement
- Extraction
- Systematics
- Scaling
- 4 Outlook

HERA

HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

Charm at HERA II

William Dunne

Outlin

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition

σ_c̄c Princi_l

 $D^* \rightarrow k\pi$ Extraction
Comparison

Measurer Extractio Systemat

Outloo

- World's only lepton-proton collider
- Collides leptons at 27.5 GeV with protons at 920 GeV
- Collisions are studied at ZEUS and H1
- Upgraded in 2000 to deliver luminosity at a faster rate
 - HERA I measurement: 82 pb⁻¹
 - HERA II: 200 pb⁻¹ now, > 400 pb⁻¹ by end of running \sim

William Dunne

Outlin

Introductio
HERA
ZEUS
Why F^C_C?

Why $F_2^{c\bar{c}}$?
Definition
Scattering

 $\sigma_{c\bar{c}}$

Principle $D^* \rightarrow k\pi$ Extraction
Comparison

Dutlook

- During the HERA upgrade ZEUS was installed with a high precision silicon microvertex detector
- This device permits precision tracking near vertex
- Designed to make measurements of heavy quark production with minimal background.

Why measure F_2^{Quelline}

Outlook

Charm at HERA II

William Dunne

Outline

HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

 $\sigma_{m{c}ar{c}}$ Principle $D^* o k\pi\pi$ Extraction
Comparison

F₂^{cc}
Measuremen
Extraction
Systematics
Scaling

Jutlaal

- The dominant source of charm production is Boson Gluon Fusion (BGF). $F_2^{c\bar{c}}$ measurements are therefore a sensitive probe of the poorly understood gluon content of the proton.
- \bullet Precise test of QCD and can be used to estimate hadronic σ
- New measurements will exploit ZEUS's new Micro-Vertex
 Detector to improve precision and will benefit from HERA II's
 superior luminosity.

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

 $\sigma_{c\bar{c}}$ Principle $D^* \rightarrow k\pi$ Extraction

F₂cc̄ Measuremer Extraction Systematics Scaling

Outlook

• $F_2^{c\bar{c}}(x, Q^2)$ is the charm fraction of the proton structure function F_2 . This is related to $\sigma^{c\bar{c}}$ by:

$$\frac{d^2\sigma^{c\bar{c}}(x,Q^2)}{dxdQ^2} = \frac{2\pi\alpha^2}{xQ^4} \left[\left(1 + (1-y)^2 \right) F_2^{c\bar{c}}(x,Q^2) - y^2 F_L^{c\bar{c}}(x,Q^2) \right]$$

- $F_2^{c\bar{c}}(x,Q^2)$ dominates the cross section.
- $F_L^{c\bar{c}}(x,Q^2)$: QCD correction significant only at large y.
- $F_L^{c\bar{c}}(x,Q^2)$ will be ignored in our kinematic region.

> William Dunne

Outlin

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

 $\sigma_{c\bar{c}}$ Principle $D^* \to k\pi$ Extraction

Comparison

F₂^{cc̄}
Measuremen
Extraction
Systematics
Scaling

Outlook

Characterised by any 2 of:

$$Q^{2} = -\mathbf{q}^{2} = (\mathbf{k} - \mathbf{k}')^{2}$$

$$W^{2} = (\mathbf{P} + \mathbf{q})^{2}$$

$$x = \frac{\mathbf{Q}^{2}}{2\mathbf{P} \cdot \mathbf{q}}$$

$$y = \frac{\mathbf{P} \cdot \mathbf{q}}{\mathbf{P} \cdot \mathbf{k}}$$

• In the QPM a deep inelastic scatter may be expressed:

$$e(\mathbf{k}) + p(\mathbf{P}) \rightarrow e'(\mathbf{k}') + X(\mathbf{P}' = \mathbf{P} + \mathbf{q})$$

- Lorentz invariants may be interpreted as
 - Q^2 : the resolving power of the exchange photon
 - x: fraction of proton momentum carried by struck quark
 - *y*: measure of the elasticity of the event.

1 =completely elastic and the proton has remained intact.

Principle

Principle $D^* \rightarrow k\pi$ Extraction Comparison

Charm at HERA II

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{C\bar{C}}$?

 $\sigma_{car{c}}$

Principle

 $D^* \to k\pi$ Extraction

Measuren Extraction Systemati

Outloo

- Boson-gluon fusion is the dominant source of c quarks
- D^* decay is the channel used to measure $\sigma_{c\bar{c}}$
 - ullet D^* 's are tagged by finding $D^* o (D^0 o k\pi)\pi_{
 m slow}$
 - σ_{D^*} is obtained using
 - branching ratio for $D^* o k\pi\pi$ decay channel pprox 0.026
 - ullet $\sigma_{car{c}}$ is obtained by extrapolating from the σ_{D^*}
 - fragmentation fraction $f(c \to D^{*\pm}) \approx 0.200$

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

 $\frac{\partial}{\partial c}$ $c\bar{c}$ Principle $D^* \rightarrow k\pi\tau$ Extraction Comparison

F₂^{cc̄}
Measureme
Extraction
Systematics
Scaling

To evaluate $N(D^*)$

- The difference in energy between D^* and D^0 is only just sufficient to produce a (low momentum) π and little else.
- This is exploited by histogramming $M(D^*)-M(D^0)$
- A resonance is observed close to the threshold
- ullet The number of D^* is obtained by counting entries in peak
- Combinatorial (like sign) background is shown in yellow

Extraction

Charm at HERA II

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{C\overline{C}}$? Definition Scattering

 $\sigma_{c\bar{c}}$ Principle

Extraction Comparison

F₂^{cc̄}
Measurem
Extraction
Systematic

Outlook

 $\sigma_{c\bar{c}}$ is measured in the following kinematic region:

- $\bullet \ 5 < Q^2 < 1000 {\rm GeV}^2$
- 0.02 < y < 0.7
- $|\eta(D^*)| < 1.5$
- $1.5 < P_T(D^*) < 15 GeV$

- \bullet Q^2 variable covers 4 orders of magnitude
- Distribution looks close to NLO prediction

Comparison

Principle $D^* \rightarrow k\pi\pi$ Extraction Comparison

Charm at HERA II

William Dunne

Outline

Introduction
HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

 $\sigma_{c\bar{c}}$ Principle $D^* \rightarrow k\pi \tau$ Extraction
Comparison

T2
Measurement
Extraction
Systematics
Scaling

Each (Q^2, y) bin is used to interpolate an $F_2^{c\bar{c}}$ point HERA II measurement is statistically limited by MC NLO, published HERA I and new HERA II are in agreement

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

Principle $D^* \rightarrow k\pi$ Extraction Comparison

Measurement
Extraction
Systematics

Outlook

- $F_2^{c\bar{c}}(x,Q^2)$ is interpolated at the (x,Q^2) point at the center of gravity in each (Q^2,y) bin.
- This extraction is performed using

$$F_{2, ext{meas}}^{car{c}}(x_i,Q_i^2) = rac{\sigma_{i, ext{meas}}^{car{c}}(ep o D^*X)}{\sigma_{i, ext{theo}}^{car{c}}(ep o D^*X)} F_{2, ext{theo}}^{car{c}}(x_i,Q_i^2)$$

- The $\sigma_{i, \text{theo}}^{c\bar{c}}$ is generated by NLO QCD using the Fixed Flavour Number Scheme.
 - In FFNS charmed quarks are generated only by BGF.
- $F_{2,\text{theo}}^{c\bar{c}}$ is NLO QCD prediction with uncertainties arising from DGLAP evolved gluon PDFs

Extraction

Measurement Extraction Systematics Scaling

Charm at HERA II

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition

 $\sigma_{c\bar{c}}$ Principle $D^* \rightarrow k\pi$ Extraction
Comparison

Measurement Extraction
Systematic

Jutlook

HERA II agrees well with FFNS prediction and HERA I results.

Systematics

Measurement Extraction Systematics

Charm at HERA II

William Dunne

Outline

Introduction
HERA
ZEUS
Why F_2^{CC} ?
Definition

 $\sigma_{c\bar{c}}$ Principle $D^* \to k\pi$ Extraction

F₂^{CC}
Measurement Extraction
Systematics
Scaling

Outlook

A complete measurement requires systematic errors Will gauge the degree to which the data is understood These parameters represent estimates of the event kinematics.

William

Outline

Introduction
HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

$\sigma_{c\bar{c}}$ Princi D^* -

 $D^* \rightarrow k\pi\pi$ Extraction
Comparison

Measurement Extraction Systematics

Outlook

Control plots of the D^* parameters

Systematics

Measurement Extraction Systematics Scaling

Charm at HERA II

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

$\sigma_{c\bar{c}}$ Principle $D^* \to k\pi$ Extraction Comparison

F₂^{cc̄}
Measuremen
Extraction
Systematics
Scaling

To measure systematics

- Adjustments are made to a number of parameters (track resolution, energy distributions etc) and the effect on $F_2^{c\bar{c}}$ is recorded.
- These shifts are separated into +ve and -ve contributions and added in quadrature separately.
- This is then combined with the statistical error to form an overall uncertainty.

Systematics

Measurement Extraction Systematics Scaling

Charm at HERA II

William Dunne

Outline

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

 $\sigma_{c\bar{c}}$ Principle $D^* \to k\pi^*$ Extraction
Comparison

Measurement Extraction Systematics Scaling

To measure systematics

- 26 systematics have been looked at so far which can be classified according to those associated with
 - Event reconstruction
 - Track reconstruction
 - Agreement between Data and MC

William Dunne

Outline

Introduction
HERA
ZEUS
Why $F_2^{c\bar{c}}$?
Definition
Scattering

O $c\bar{c}$ Principle $D^* \rightarrow k\pi c$ Extraction Comparison

F₂^{cc}
Measurement Extraction
Systematics
Scaling

HERA II

If there were no gluons in the proton:

- Proton = $uu\bar{d}$ only
- Structure function will scale at high Q^2

The presence of gluons in the proton:

- Contribution to F₂^{cc̄} at low x
- $\bullet \ F_2^{c\bar{c}}(x) \to F_2^{c\bar{c}}(x,Q^2)$

This measurement confirms scaling violations occur at low *x* and so the presence of gluons in the proton is confirmed

William Dunne

Outlin

Introduction HERA ZEUS Why $F_2^{c\bar{c}}$? Definition Scattering

$\begin{array}{c} \sigma \ c \overline{c} \\ \text{Principle} \\ D^* \ \rightarrow \ k \tau \\ \text{Extraction} \end{array}$

F₂^{CC}
Measuremer
Extraction
Systematics
Scaling

Outlook

Conclusions and outlook...

- $F_2^{c\bar{c}}$ has been measured at HERA II with statistical errors
 - Work is underway to evaluate and reduce systematic errors
- Tools are being constructed to increase statistics by measuring F₂^{cc̄} in other ways using
 - Impact parameters
 - Other decay modes
- These measurements of $F_2^{c\bar{c}}$ can be fed back into theoretical fits to further constrain our knowledge of gluon PDFs.