Imperial College London

The search for $B^{\pm} \rightarrow a_0^{\pm} \pi^0$ using the BaBar detector at SLAC

William Panduro Vazquez

IoP HEPP Meeting, Warwick April 2006

Overview

- The BaBar detector
- Physics Motivation
- Reconstruction & Background
 - Summary of potential background sources
 - Final state Dalitz plot
- Analysis techniques
 - Maximum Likelihood Fit
 - Fitting Variables
 - Signal and Continuum Background Models
 - Test fits to off-resonance data
- Analysis outlook

The BaBar Detector

BABAR Detector

- 2 mile long Linac feeds PEP-II storage ring
- Collide 9 GeV e⁻ and 3.1 GeV e⁺ at a centre of mass energy of 10.58 GeV
- Produce BB pairs at the Y(4S) resonance
- 50% B^+B^- and 50% $B^0\overline{B}^0$ produced
- \sim 310fb⁻¹ collected so far 300M BB pairs

Physics Motivation

- Status of Theory
 - Scalar mesons generally poorly understood
 - 2 and 4 quark models exist
 - Also suggestion they could have substantial glueball or $K\overline{K}$ 'molecular admixture'
- Motivation for this analysis
 - Predicted 2 quark BF from QCD factorisation of ~2x10⁻⁷ (charmless decay therefore very rare). (hep-ph/0501022)

Scalar Meson Nonet

- In 4 quark model dominant tree amplitude suppressed giving a smaller branching fraction (predict up to a factor of 10 difference)
- Measurement of BF will be a test of credibility of these models.

Reconstruction & Sources of Background

- Explicit decay chain:
 - $\bullet \quad B^{\pm} \to a_0^{\pm} \pi^0 (a_0^{\pm} \to \eta \pi^{\pm}, \eta \to \gamma \gamma)$
- Signal is composed of 1 charged track and 4 photons.
 - Large amount of combinatorial background is expected.
- 'Continuum' light quark ($u\overline{u}, d\overline{d}, s\overline{s}, c\overline{c}$) production
 - Dominant background source
 - At BaBar (10.58 GeV) produced with σ = 3.39nb compared to 0.535nb for B⁺B⁻
 - Model using continuum Monte Carlo
- B decay background
 - B→charm component (non-peaking)
 - Using BaBar's generic 'cocktail' Monte Carlo containing known decays with latest Branching Fractions
 - Also a contribution from 'charmless' B decays
 - Potentially peaking backgrounds
 - Use specially generated Monte Carlo specific to each background mode

Dalitz Plot guide: charmless B backgrounds

Extended Maximum Likelihood fit

The Likelihood function for N events

$$\mathcal{C} = \frac{e^{-\left(\sum n_j\right)}}{N!} \prod_{i=1}^{N} \left[\sum_{j=1}^{m} n_j \mathcal{P}_j(\mathbf{x}_i)\right]$$
'Extended' ML, N varies according to a Poisson distribution
Likelihood for a given event 'i'

- Define hypothesis probability density functions (pdfs) for signal and background
- Each hypothesis has an associated yield
- Use ROOFIT package (now part of ROOT)

ML Fit Variables and PDFs - I

Beam and B candidate energy difference

$$\Delta E = E_B^{cm} - \frac{1}{2}\sqrt{s}$$

Beam Energy Substituted Mass

$$m_{\rm ES} = \sqrt{\frac{1}{4}s - |\vec{p}_B|^2}$$

- 'SxF' refers to random combinations found in signal events
- Significant shape difference between signal and continuum
- B background shapes have both signal and continuum-like properties

ML Fit Variables and PDFs - II

Mass of a₀ candidate

- Linear Discriminant (Fisher)
 - Function optimised to maximise signal and continuum background separation
 - Constructed from Legendre Polynomials of energy flow and other event shape related quantities

Other variables, not used in fit, have been used for event selection in order to optimise S/\sqrt{B}

Test fit to off-resonance data

- BaBar has collected ~20fb⁻¹ at 40 MeV below the Y(4S)
 - Do not expect B meson production at this centre of mass energy
- Test fit by running it on this data
 - Yield = -8.7±4.1
 - Consistent with zero
- Estimating error when fitting to on-resonance data
 - $4.1x\sqrt{9.7} = 13$ events
 - Error on BF = $2x10^{-6}$

Conclusion and Outlook

- Analysis still Blind
 - Not allowed to extract signal yield from on-resonance data
- Continuing the process of testing the fit
- Expect to be able to set an upper limit for the BF of this mode
- Currently extending analysis to cover both $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ channels
 - η→γγ (40%)
 - $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ (23%)
- Aim to include full 1999-summer 2006 dataset (~400fb⁻¹)
 - Last new data available before I write my thesis!
- Eventually extend further to cover other resonances in the ηπ⁺π⁰
 Dalitz plane.
 - Access to $a_0^0 \pi^+$
 - Another test of the theories of scalar meson structure

Extra Slides

Categorising Charmless B backgrounds

- Modes which share our final state $(\eta \pi^{\pm} \pi^{0})$
 - Understand further looking at Dalitz Plot (later)
- Modes sharing our final state + 1 particle
 - For example: a mode which decays to ηπ[±]π⁰π⁰, but one π⁰ is not reconstructed
- Modes where an extra particle has been misreconstructed
 - For example: a mode with an ηπ[±] where a π0 is misresonstructed from background photons
- Modes with a mis-reconstructed η
 - For example: a mode with an $\pi^{\pm}\pi^{0}\pi^{0}$ final state, where one of the π^{0} 's is mis-reconstructed as an η
- Modes where particle ID algorithms incorrectly identify a Kaon as a Pion
 - For example: K⁺ηπ⁰

Background Model

Background type	ΔE Model	M _{es} Model	M _{a₀} Model	Fisher Model
udsc	2 nd Order Poly	Argus	2 nd Order Poly + Single Gauss	Double Gauss
Generic B ⁺ B ⁻	3 rd Order Poly	Argus	2 nd Order Poly	Bifurcated Gauss
Generic B ⁰ B ⁰ bar	3 rd Order Poly	Argus	2 nd Order Poly	Bifurcated Gauss
ρ⁺η	2D Keys		1 st Order Poly	Bifurcated Gauss
ρ(1450)⁺η	2D Keys		2 nd Order Poly	Bifurcated Gauss
a ₀ (1450) ⁺ π ⁰	2D Keys		2 nd Order Poly	Bifurcated Gauss
ηπ⁺π⁰ (non-res)	1 st Order Poly + Novosibirsk	Argus + Single Gauss	3 rd Order Poly	Bifurcated Gauss
a ₀ ⁺ ρ ⁻	2D Keys		Breit-Wigner	Bifurcated Gauss
a ₀ ⁰ ρ ⁻	2D Keys		2 nd Order Poly	Bifurcated Gauss
ηπ ⁰	2D Keys		1 st Order Poly	Bifurcated Gauss
π+π ⁰ π ⁰ (non-res)	2D Keys		2 nd Order Poly	Bifurcated Gauss
ρ+π0	2D Keys		2 nd Order Poly + Breit-Wigner	Bifurcated Gauss
X _S Y (combined)	2D Keys		2 nd Order Poly	Bifurcated Gauss

Testing the fit: Toy Monte Carlo

- 'Pure' Toy Study
 - Test ML Fit by generating Monte Carlo events based on hypothesis PDFS
 - Re-fit this generated dataset with hypothesis PDFs
 - Shifts in measured quantities indicate a bias in the fit
- 'Embedded' Toy Study
 - Can add samples of signal and/or selected background modes into generated dataset
 - Correlations in variables will cause biases in the fit
 - Need to test if fit is robust against correlations

Toy MC Studies

pull on signal yield

error on signal yield