Determination of $|V_{cb}|$, m_b and m_c from Inclusive B Decay Distributions

Henning Flächer

Royal Holloway, University of London

11 April 2006

Overview

- Will cover results of hep-ph/0507253 and their applications
- Motivation
 - Short Introduction to theoretical framework
- Experimental Measurements
 - \succ hadron and lepton moments from $B \to X_c \mbox{ Iv}$
 - \succ photon energy moments from $B \to X_s \, \gamma$
- Results of the combined fit
 - Extraction of |V_{cb}|, m_b, m_c and higher order heavy quark parameters
- Applications
- Conclusions

CKM matrix and Unitarity Triangle

In the Standard Model, couplings between quarks of different flavour are described by the CKM matrix. It relates weak to mass eigenstates. Unitary!

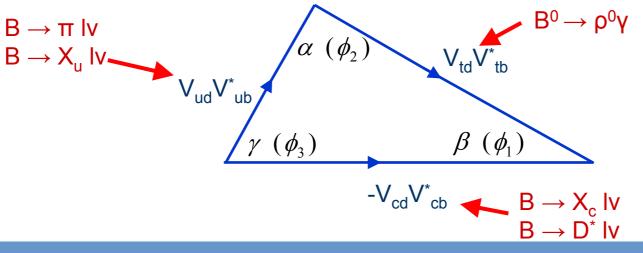
V_{CKM} =

 V_{ud}

 V_{us}

V_{cd} V_{cs}

radiative decays

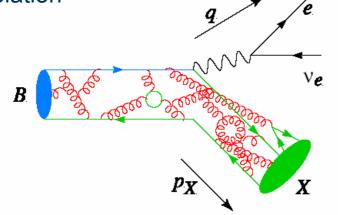

CKM matrix has 4 free parameters:

• 3 Euler angles

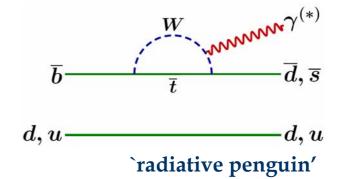
• 1 free phase

Can be visualised as triangle:

11 April 2006


Henning Flächer - RHUL

semileptonic decays


Semileptonic and Radiative B Decays

Why semileptonic decays?

 $|V_{ub}|$ and $|V_{cb}|$ are crucial in testing CKM unitarity and SM mechanism for CP violation

Hadronic and leptonic currents factorise, theoretical uncertainties are under control giving access to $|V_{ub}|$ and $|V_{cb}|$

- $b \rightarrow s,d$ transition is a Flavour Changing Neutral Current
 - forbidden in the standard model at tree-level
 - > exists only at loop level
- heavy particles dominate in the loop
 - in SM: sensitive to 'top' CKM parameters: V_{tb}V^{*}_{tq}

Both decays can be treated in the framework of Heavy Quark Effective Theory, relating parton level decay rate to meson decay rate with the help of Operator Product Expansions

11 April 2006

Henning Flächer - RHUL

Heavy Quark Expansions

Heavy Quark Expansions connect the inclusive decay width to |V_{cb}|:

 Γ_{SL} proportional to $|V_{cb}|^2$, but <u>perturbative</u> and <u>non-perturbative</u> corrections to free quark decay needed \rightarrow double expansion in α_s and $1/m_b$

$$\Gamma_{clv} = \frac{G_F m_b^5}{192\pi^3} |V_{cb}|^2 (1 + A_{ew}) A_{pert} A_{nonpert} \cong |V_{cb}|^2 f_{OPE}(m_b, m_c, a_i)$$

4 parameters at order α_s^2 and $1/m_b^3$

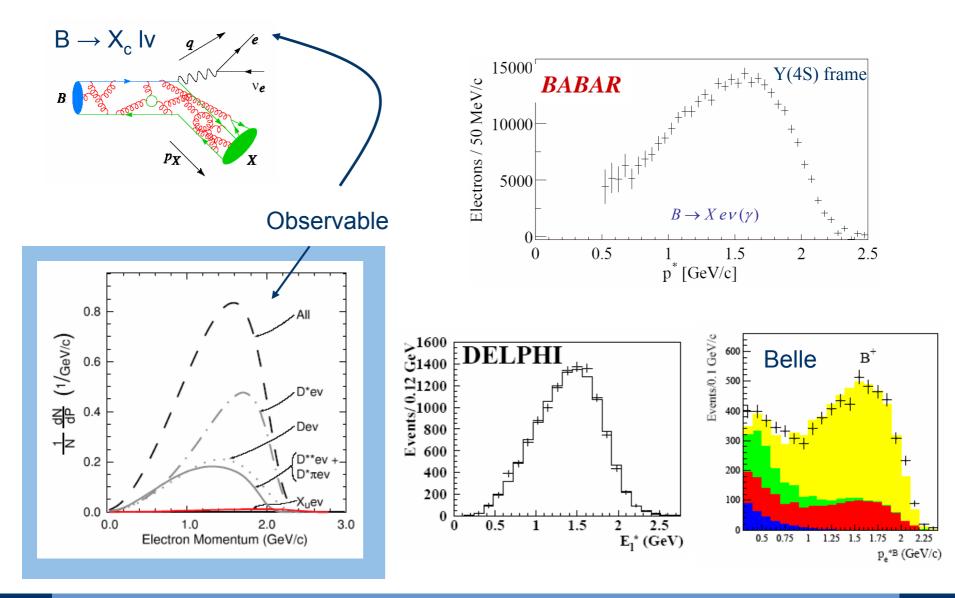
Need to determine non-perturbative parameters!

→ Use moments of inclusive distributions where <u>same</u> parameters appear:

$$< X^{n} > (E_{cut}) = \frac{\int (X - X^{0})^{n} \frac{d\Gamma}{dX} dX}{\int \frac{d\Gamma}{dX} dX}$$

$$\cong f_{OPE}^{'}(m_{b}, m_{c}, a_{i})$$
 mb and μ_{π}^{2} are used to parameterise both $B \rightarrow X_{s}$ γ and $B \rightarrow X$ lv spectra

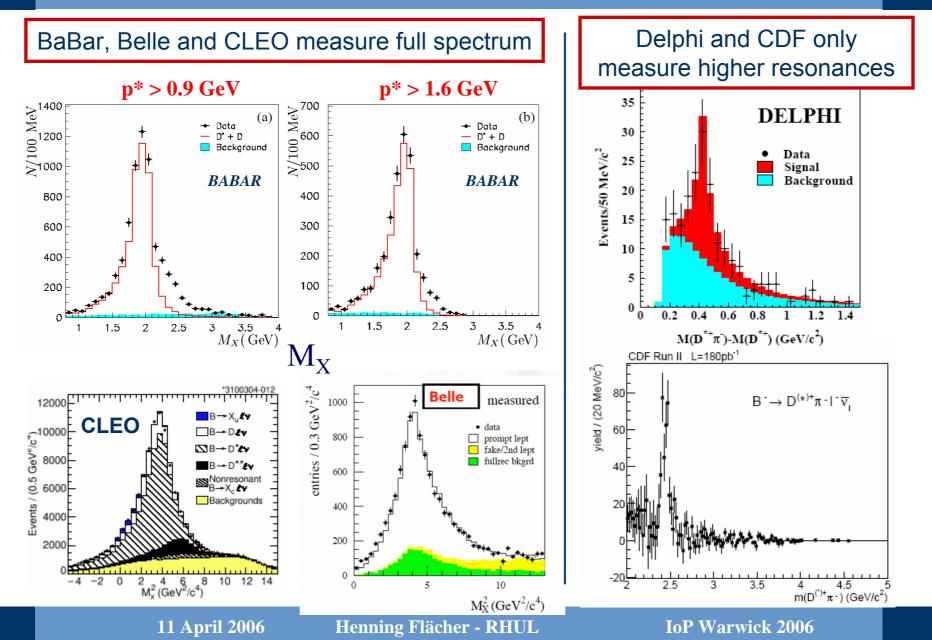
$$= Hadronic Mass distribution \langle M_{X}^{n} \rangle \rightarrow \langle M_{X} \rangle (m_{b}, m_{c}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{L}^{3}, \alpha_{s})$$


$$= Lepton Energy spectrum \langle E_{\ell}^{n} \rangle \rightarrow \langle E_{\ell}^{n} \rangle (m_{b}, m_{c}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{LS}^{3}, \alpha_{s})$$

$$= Photon Energy spectrum \langle E_{\gamma}^{n} \rangle \rightarrow \langle E_{\gamma}^{n} \rangle (m_{b}, \mu_{\pi}^{2}, \mu_{G}^{2}, \rho_{D}^{3}, \rho_{LS}^{3}, \alpha_{s})$$

Henning Flächer - RHUL

11 April 2006


Lepton Energy Moments

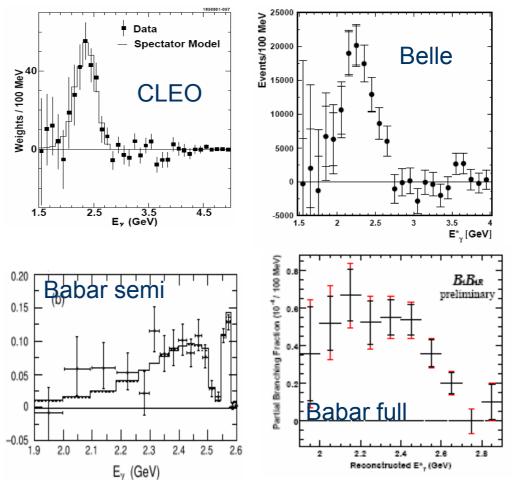
11 April 2006

Henning Flächer - RHUL

Hadronic Mass Moments

b→sγ Spectra and Moments

Measure photon spectrum in b \rightarrow sy decays:


Two main approaches:

- Inclusive:
 - identify photon
- Semi-Inclusive:
 - reconstruct many exlusive final states (up to 38!)

Difficult measurement: Overwhelming background from π^0 s for E_y < 1.8 GeV

Measurement of photon spectrum and its moments gives information about inner structure of B meson:

- b quark mass
- Fermi momentum

Available moment measurements

	Legend: n = order of (central) moment of observable M _X , E _I and E _γ I = min. lepton momentum		Hadron Moments		Lepton Moments		Photon Moments			
		BaBar	n=1,2,3,4 I=0.9-1.6	V	n=0,1,2,3 l=0.6-1.5	V	n=1,2,3 g=1.9-2.3	Q		
		Belle	n= 1,2 I=0.9-1.6	X	n=1,2 I=0.6-1.5	X	n=1,2 g=1.8	V		
g	g = min. photon energy	CLEO	n=2,4 I=1.0-1.5	M	n=1,2 I=0.6-1.5	X	n=1,2 g=2.0	Ø		
	✓ published with covariance matrix	Delphi	n=2,4,6 l=0.0		n= 1,2,3 I=0.0					
	and used in fit I not used in fit as covariance matrices	CDF	n=2,4 I=0.7	Ø						
	not available	Total of 51 massurements!								

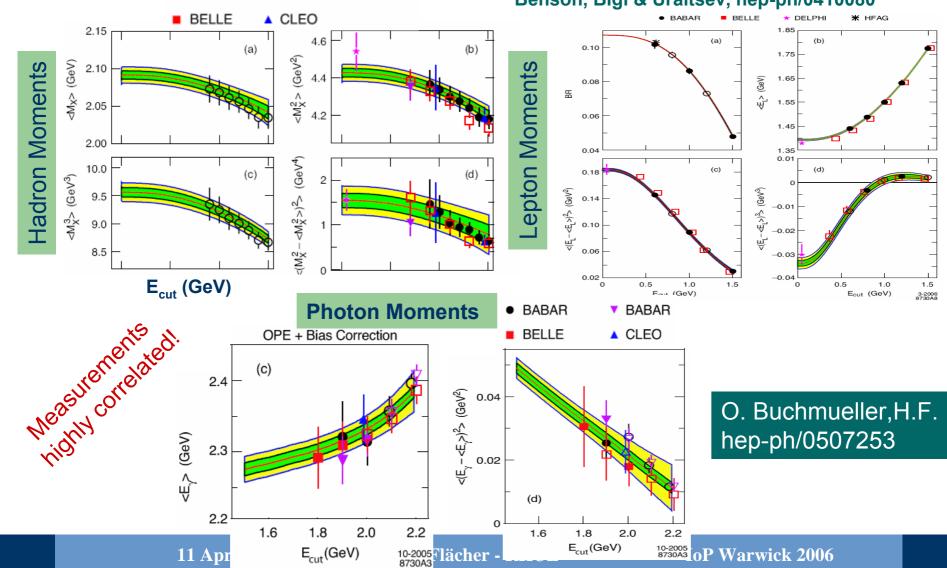
Total of 51 measurements!

Important to take correlations between moments with different min. lepton/photon energies into account

11 April 2006

Henning Flächer - RHUL

Inclusive |V_{cb}| - Fit to Moments


Based on calculations in kinetic scheme:

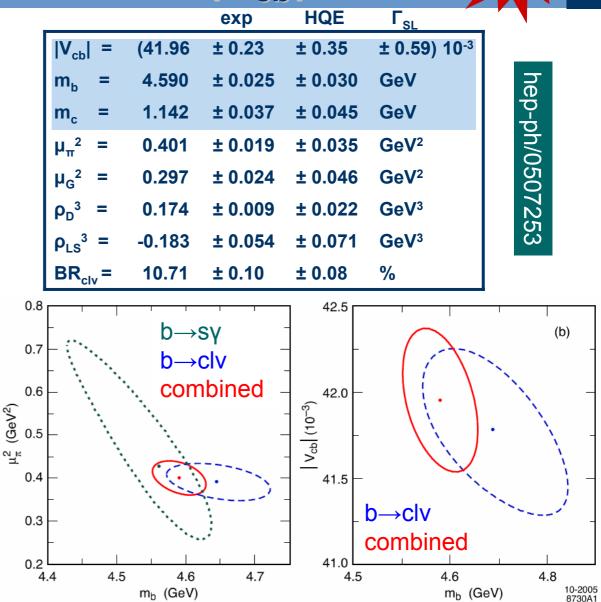
★ DELPHI

CDF

BABAR

Benson, Bigi, Mannel & Uraltsev, hep-ph/0410080 Gambino & Uraltsev, hep-ph/0401063 Benson, Bigi & Uraltsev, hep-ph/0410080

Inclusive |V_{cb}|

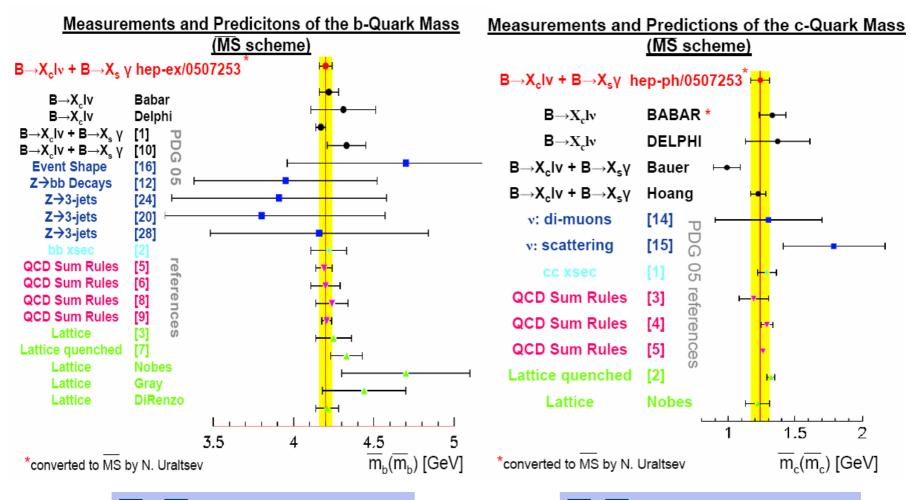

Result of fit to all moment measurements:

|V_{cb}| @ 2% m_b < 1% m_c @ 5%

 $\frac{In MS \text{ scheme:}}{\overline{m}_{b}(\overline{m}_{b})} = 4.20 \pm 0.04 \text{ GeV}$ $\overline{m}_{c}(\overline{m}_{c}) = 1.24 \pm 0.07 \text{ GeV}$ $\overline{m}_{c}(\mu)/\overline{m}_{b}(\mu) = 0.235 \pm 0.012$

courtesy of N.Uraltsev

Good agreement with other similar analyses: Bauer et al. hep-ph/0408002 DELPHI hep-ex/0510024


11 April 2006

Henning Flächer - RHUL

IoP Warwick 2006

New!

Comparison with other determinations

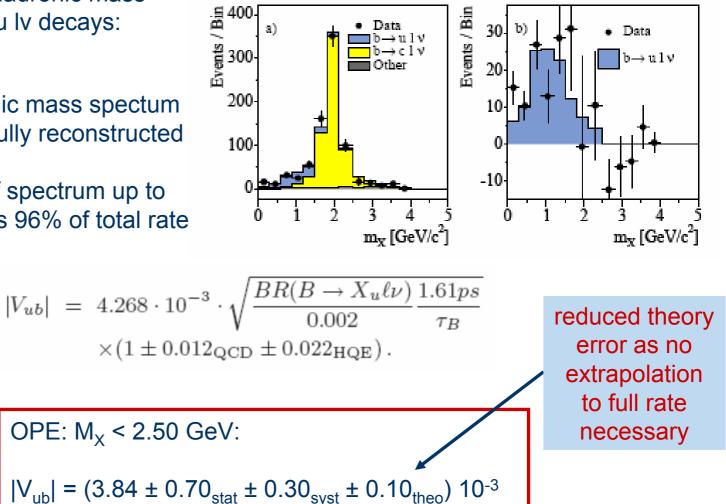
$m_b(m_b) = 4.20 \pm 0.04 \text{ GeV}$

 $\overline{\mathrm{m}}_{\mathrm{c}}(\overline{\mathrm{m}}_{\mathrm{c}}) = 1.24 \pm 0.07 \; \mathrm{GeV}$

Conversion from kinetic mass scheme to MS scheme with hep-ph/9708372, hep-ph/0302262 See also report from CKM WS hep-ph/0304132

11 April 2006

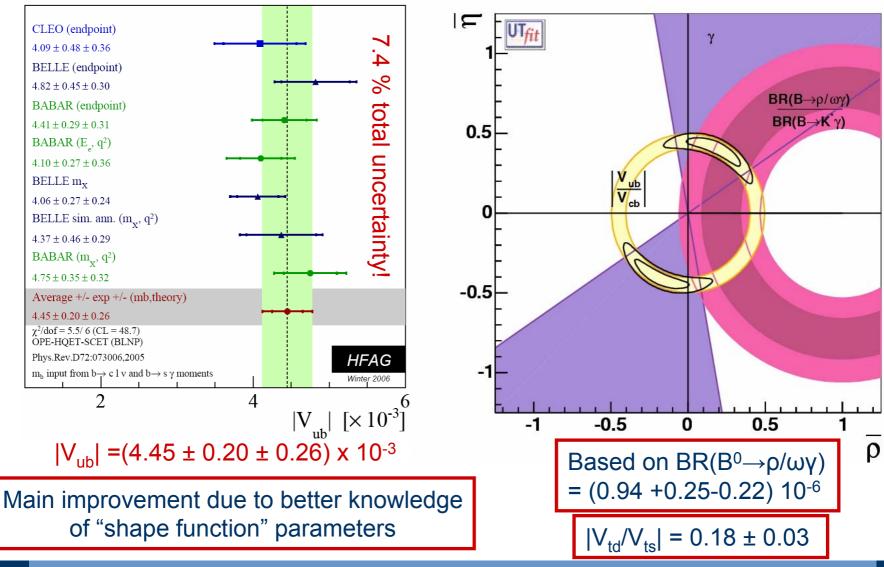
Henning Flächer - RHUL


Inclusive |V_{ub}|

hep-ex/0601046

Measurement of hadronic mass spectrum in B->Xu lv decays:

- Measure hadronic mass spectum on the recoil of fully reconstructed B mesons
- Measurement of spectrum up to 2.5 GeV includes 96% of total rate


Standard local **OPE for full rate: Uraltsev** hep-ph/9905520 Hoang,Ligeti, Manohar hep-ph/9811239

11 April 2006

Henning Flächer - RHUL

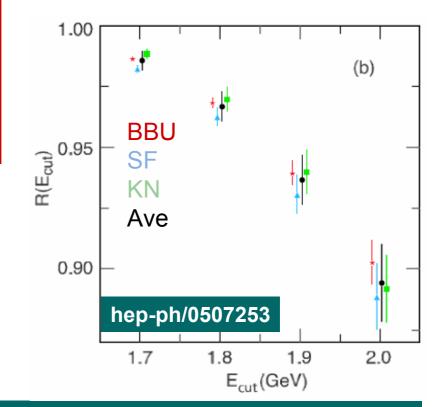
V_{ub} Summary and UT Constraints from Sides and Tree Processes

11 April 2006

Henning Flächer - RHUL

b→sγ Branching Fraction

 Partial branching fractions are measured above different photon energies
 Need to be extrapolated to E_γ > 1.6 GeV to compare with theory
 Extrapolation factors based on HQE fit to clv and bsg moments

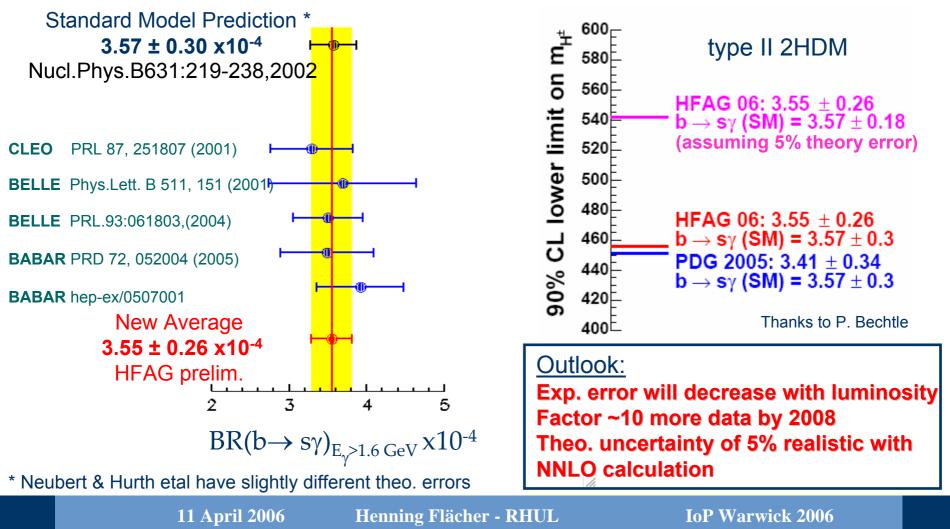

Mode	Reported \mathcal{B}	E_{\min}	\mathcal{B} at E_{\min}
CLEO Inc. [3]	$321 \pm 43 \pm 27^{+18}_{-10}$	2.0	$306\pm41\pm26$
Belle Semi.[4]	$336 \pm 53 \pm 42^{+50}_{-54}$	2.24	—
Belle Inc.[5]	$355 \pm 32^{+30+11}_{-31-7}$	1.8	$351\pm32\pm29$
BABAR Semi.[6]	$335 \pm 19^{+56+4}_{-41-9}$	1.9	$327 \pm 18^{+55+4}_{-43-9}$
BABAR Inc.[7]	_	1.9	$367\pm29\pm34\pm29$

New HFAG Average:

BR(B→X_sγ) = (3.55 ± 0.24 ± 0.10 +-0.03) 10⁻⁴

7% uncertainty

Extrapolation Factors for BF


SM prediction:

 $3.57 \pm 0.3 \times 10^{-4}$ Buras et al. (hep-ph/0203135) $3.44 \pm 0.4 \times 10^{-4}$ Neubert (hep-ph/0408179) $3.61 \pm 0.42 \times 10^{-4}$ Hurth et al. (hep-ph/0312260)

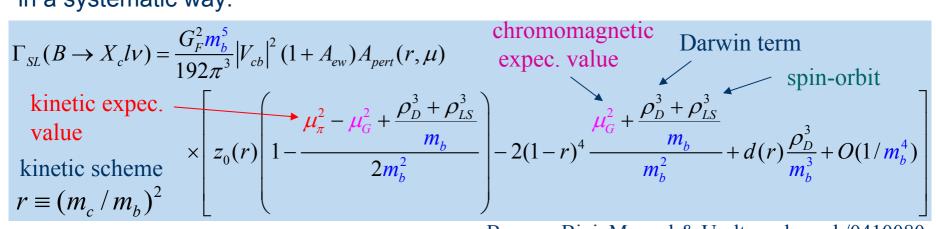
Henning Flächer - RHUL

BR(b \rightarrow s γ **)** Average

- Experiments measure PBF's above different photon energies
- Need to be extrapolated to $E_v > 1.6$ GeV to compare with theory
- Extrapolation factors based on HQE fit to $b \rightarrow clv$ and $b \rightarrow s\gamma$ moments:

Conclusions

- Consistency between experimental results
- Good agreement of results from semileptonic and radiative B decays
- Precison measurements of SM parameters:
 - ▷ |V_{cb}| at 2% level
 - |V_{ub}| at ~7% probing consistency with sin(2β) and hence SM
 - > m_{b} (<1%) and m_{c} (5%)
- Radiative B decays
 - > BR(B→X_s γ) @ 7% important constraint on many NP models


Backup Slides

11 April 2006

Henning Flächer - RHUL

Fit to Moments of Inclusive Decay Distributions

The Operator Product Expansion separates perturbative from non-perturbative scales in a systematic way:

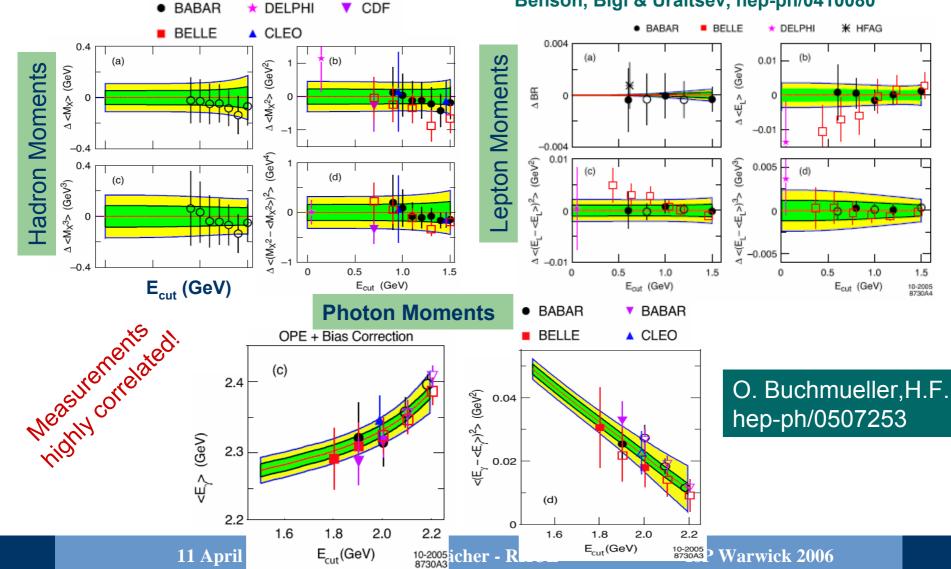
Benson, Bigi, Mannel & Uraltsev, hep-ph/0410080 Gambino & Uraltsev, Eur.Phys.J. C34, 181 (2004)

Moments of hadronic mass, lepton energy and photon energy in $b \rightarrow sg$ distribution depend on same heavy quark parameters:

$$\langle M_X^n \rangle \to \langle M_X \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) \langle E_\ell^n \rangle \to \langle E_\ell^n \rangle (m_b, m_c, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) \langle E_\gamma^n \rangle \to \langle E_\gamma^n \rangle (m_b, \mu_\pi^2, \mu_G^2, \rho_D^3, \rho_{LS}^3, \alpha_s) .$$

mb and μ_π² are used to parameterise both B→Xs γ and B→Xu lv spectra

Many moment measurements (~50) allow to fit for all parameters up to $1/m_b^3$


11 April 2006

Henning Flächer - RHUL

Inclusive |V_{cb}| - Fit to Moments

Based on calculations in kinetic scheme:

Benson, Bigi, Mannel & Uraltsev, hep-ph/0410080 Gambino & Uraltsev, hep-ph/0401063 Benson, Bigi & Uraltsev, hep-ph/0410080

