The University of Manchester

> Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed vector Q_T distribution in DIS as a probe of small x broadening effects

Yazid Delenda Supervisor: Dr. Mrinal Dasgupta

University of Manchester

IoP Particle Physics Conference Warwick, 11 April 2006

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

 Q_T distributions are important for studying properties of vector bosons (e.g. W^{\pm} , Z^0 and the Higgs at the LHC).

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

 Q_T distributions are important for studying properties of vector bosons (e.g. W^{\pm} , Z^0 and the Higgs at the LHC).

Accurate resummed predictions for these exist up to NNLL accuracy. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, 2005

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の久()

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

 Q_T distributions are important for studying properties of vector bosons (e.g. W^{\pm} , Z^0 and the Higgs at the LHC).

Accurate resummed predictions for these exist up to NNLL accuracy. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, 2005

Non Perturbative corrections are modeled in impact parameter space by a Gaussian, whose origin is believed to be intrinsic k_T .

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

 Q_T distributions are important for studying properties of vector bosons (e.g. W^{\pm} , Z^0 and the Higgs at the LHC).

Accurate resummed predictions for these exist up to NNLL accuracy. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, 2005

Non Perturbative corrections are modeled in impact parameter space by a Gaussian, whose origin is believed to be intrinsic k_T .

Do conventional resummed predictions and x-independent NP corrections hold at small x? (BFKL?)

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Studies of event shape variables in DIS Breit current hemisphere suggest no significant x-dependent power corrections at relatively small x (except for jet broadening, whose x-dependence is not due to BFKL effects).

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Studies of event shape variables in DIS Breit current hemisphere suggest no significant x-dependent power corrections at relatively small x (except for jet broadening, whose x-dependence is not due to BFKL effects).

However, semi-inclusive DIS q_T (transverse energy) distribution appears to be broadened in impact parameter space, b, by a gaussian:

$$e^{-b^2
ho(x)}, \quad
ho(x)\sim rac{1}{x} ext{ at small } x.$$

e.g. S. Berge, P. M. Nadolsky, F. I. Olness, C.-P. Yuan, 2005 arXiv: hep-ph/0508215

We choose an observable which is directly related to vector boson Q_T :

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

We choose an observable which is directly related to vector boson Q_T : vector Q_T distribution in DIS Breit current hemisphere.

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

We choose an observable which is directly related to vector boson Q_T : vector Q_T distribution in DIS Breit current hemisphere.

DIS at Born level:

◆ロト ◆母 ト ◆ 臣 ト ◆ 臣 ト ○臣 - - - のへで

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

We choose an observable which is directly related to vector boson Q_T : vector Q_T distribution in DIS Breit current hemisphere.

DIS at Born level:

DIS standard variables:

 $P^{2} = -q^{2}$ $x = \frac{Q^{2}}{2P.q}$ $y = \frac{P.q}{P.l} = \frac{p.q}{p.l}$

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook We choose an observable which is directly related to vector boson Q_T : vector Q_T distribution in DIS Breit current hemisphere.

DIS at Born level:

DIS standard variables:

$$Q^{2} = -q^{2}$$

$$x = \frac{Q^{2}}{2P.q}$$

$$y = \frac{P.q}{P.l} = \frac{p.q}{p.l}$$

x: momentum fraction of struck quark relative to proton.

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

◆□ > ◆□ > ◆ □ > ● □ > ◆ □ > ● □ >

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

Current hemisphere, \mathcal{H}_C : has same direction as the photon current direction.

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

Current hemisphere, \mathcal{H}_C : has same direction as the photon current direction. Remnant hemisphere, \mathcal{H}_R : has same direction as the incoming quark direction.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の久()

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

Current hemisphere, \mathcal{H}_C : has same direction as the photon current direction. Remnant hemisphere, \mathcal{H}_R : has same direction as the incoming quark direction. Why choose \mathcal{H}_C ?

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の久()

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

Current hemisphere, \mathcal{H}_C : has same direction as the photon current direction. Remnant hemisphere, \mathcal{H}_R : has same direction as the incoming quark direction. Why choose \mathcal{H}_C ?

• Almost empty from non-perturbative remnants of the proton.

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

Breit frame: is the rest frame of 2xP + q

Current hemisphere, \mathcal{H}_C : has same direction as the photon current direction. Remnant hemisphere, \mathcal{H}_R : has same direction as the incoming quark direction. Why choose \mathcal{H}_C ?

• Almost empty from non-perturbative remnants of the proton.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● のへぐ

• Analogous to one hemisphere in e^+e^- .

Motivation Comparison between DIS Breit frame and Hadron-Hadron collisions

Leading Order Q_T distribution Leading Order Q_T distribution

Number of events with $\left|\sum_{i\in\mathcal{H}_C}\vec{k}_{Ti}\right| < Q_T$, for small Q_T , is:

Motivation

Leading order Q_T distribution

 $\overline{\sigma}$

Resummed distribution

Matching

Conclusions and outlook

$$\begin{split} \frac{\sigma}{\sigma_0} &= \frac{\alpha_S}{2\pi} \Bigg(-\frac{1}{2} C_F \ln^2 \frac{Q_T^2}{Q^2} - \frac{3}{2} C_F \ln \frac{Q_T^2}{Q^2} \\ &+ \frac{P_{qq}^{(0)} \otimes q(x,Q^2)}{q(x,Q^2)} \ln \frac{Q_T^2}{Q^2} + \frac{\mathbf{C}_1 \otimes \mathbf{q}(x,Q^2)}{q(x,Q^2)} \Bigg), \end{split}$$

(日) (日) (日) (日) (日) (日) (日) (日)

 $q(x,Q^2) = \sum_{i}^{n_f} e_{qi}^2 \left[q_i(x,Q^2) + \bar{q}_i(x,Q^2) \right],$ (PDFs). $P_{aa}^{(0)}$: $q \rightarrow q$ LO splitting function. **q**: column of PDFs (including gluon density). C_1 : a row of regular functions (independent of Q_T), calculable in perturbation theory.

MANCHES1 1824

The Universit of Mancheste

Leading Order Q_T distribution Leading Order Q_T distribution

Number of events with $\left|\sum_{i\in\mathcal{H}_C}ec{k}_{Ti}
ight| < Q_T$, for small Q_T , is:

Motivation

Leading order Q_T distribution

 $\overline{\sigma}$

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

$$\begin{split} \frac{1}{0} &= \frac{\alpha_S}{2\pi} \Bigg(-\frac{1}{2} C_F \ln^2 \frac{Q_T^2}{Q^2} - \frac{3}{2} C_F \ln \frac{Q_T^2}{Q^2} \\ &+ \frac{P_{qq}^{(0)} \otimes q(x,Q^2)}{q(x,Q^2)} \ln \frac{Q_T^2}{Q^2} + \frac{\mathbf{C}_1 \otimes \mathbf{q}(x,Q^2)}{q(x,Q^2)} \Bigg), \end{split}$$

 $q(x,Q^2) = \sum_{i}^{n_f} e_{qi}^2 \left[q_i(x,Q^2) + \bar{q}_i(x,Q^2) \right], \text{ (PDFs)}.$ $P_{qq}^{(0)}: q \to q \text{ LO splitting function}.$

q: column of PDFs (including gluon density).

 C_1 : a row of regular functions (independent of Q_T), calculable in perturbation theory.

Regular terms in Q_T that tend to zero when $Q_T \rightarrow 0$ can be obtained from a DIS event generator, e.g. DISPATCH:

M. Dasgupta and G. P. Salam, 2001, o

Leading Order Q_T distribution Origin of Logarithms

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook Restricting real emissions spoils the complete cancelation of infrared and/or collinear singularities between real and virtual contributions to Feynman diagrams.

	MANCHESTER 1824
ester	
Unive	
of M	

Leading Order Q_T distribution Origin of Logarithms

Motivation

 $\begin{array}{c} \text{Leading order} \\ Q_T \\ \text{distribution} \end{array}$

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

The smallness of α_S is spoiled by the logarithms.

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 … のへぐ

	MANCHESTER 1824
ester	
Unive	
of M	

Leading Order Q_T distribution Origin of Logarithms

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

The smallness of α_S is spoiled by the logarithms.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の久()

These logs must be resummed to all orders.

Resummed Q_T distribution Result

Motivation Leading order Q_T distribution

0

 $\begin{array}{c} {\sf Resummed} \\ Q_T \\ {\sf distribution} \end{array}$

Matching

Conclusions and outlook

$$\frac{1}{\sigma_0} \frac{d\sigma}{dQ_T} = \frac{1}{q(x,Q^2)} \frac{d}{dQ_T} \left[\left\{ q(x,Q_T^2) + \frac{\alpha_S}{2\pi} \mathbf{C}_1 \otimes \mathbf{q}(x,Q^2) \right\} \right. \\ \left. \times e^{\gamma_E h} e^{-\left\{ Lg_1(\alpha_S L) + g_2(\alpha_S L) + \alpha_S g_3(\alpha_S L) + \cdots \right\}} \frac{\Gamma(1+h/2)}{\Gamma(1-h/2)} \right],$$

 $L = \ln \frac{Q_T^2}{Q^2}$, γ_E : Euler constant, Γ : Euler Gamma function. h and g_i are functions of $\alpha_S L$.

The expansion of the above equation to $\mathcal{O}(\alpha_S)$ gives exactly the leading order result.

Matching M₂ Matching Scheme

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Matching M₂ Matching Scheme

Motivation Leading order

distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:

$\begin{array}{c} \text{Matching} \\ \textit{M}_2 \text{ Matching Scheme} \end{array}$

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:

• MC is valid when Q_T is large.

Matching M₂ Matching Scheme

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 ● ● ●

Must supply the distribution with Monte Carlo results:

- MC is valid when Q_T is large.
- Resummed result valid when Q_T is small.

Matching M₂ Matching Scheme

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:

- MC is valid when Q_T is large.
- Resummed result valid when Q_T is small.

Hence we add the resummed result and Monte Carlo result, and remove double counted terms (the Logs and constant C_1).

MANCHESTER

Matching Comparison between Matched, resummed and MC results

 Q_T distribution

Matching

Conclusions and outlook

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MANCHESTER

Matching Comparison between Matched, resummed and MC results

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

33 / 42

◆ロト ◆昼 ト ◆臣 ト ◆臣 ● ◆ ○ ◆ ○ ◆

Conclusions and outlook

Non-perturbative corrections and small x effects

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Non perturbative correction to the distribution is a convolution with the gaussian, e^{-kb^2} .

▲ロト ▲園 ト ▲ヨ ト ▲ヨ ト 「ヨ 」 のなべ

Conclusions and outlook Non-perturbative corrections and small *x* effects

Motivation

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Non perturbative correction to the distribution is a convolution with the gaussian, e^{-kb^2} .

k is a constant (at large x at least), and plausibly half of that in Drell-Yan.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● のへぐ

Conclusions and outlook Non-perturbative corrections and small *x* effects

Motivation Leading order

 Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Non perturbative correction to the distribution is a convolution with the gaussian, e^{-kb^2} .

k is a constant (at large x at least), and plausibly half of that in Drell-Yan.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● のへぐ

By comparing to small x data, our plots should reveal any dependence of k on x.

Resummed (and matched) results exist.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへぐ

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed (and matched) results exist.

Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の久()

Resummed (and matched) results exist.

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の久()

High- $Q~(\gtrsim$ 50 GeV) preliminary comparison to data seems ok (within error bars).

Resummed (and matched) results exist.

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● のへぐ

High- $Q \ (\gtrsim 50 \text{ GeV})$ preliminary comparison to data seems ok (within error bars).

Need to understand low-Q data.

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

High- $Q \ (\gtrsim 50 \text{ GeV})$ preliminary comparison to data seems ok (within error bars).

Need to understand low-Q data.

Results will be important for LHC Physics: If broadening effects are observed, then this will have an impact on measurements of the mass and width of W^{\pm} , Z and Higgs.

Motivation Leading order Q_T distribution

 $\begin{array}{c} {\rm Resummed} \\ Q_T \\ {\rm distribution} \end{array}$

Matching

Conclusions and outlook

Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

High- $Q \ (\gtrsim 50 \text{ GeV})$ preliminary comparison to data seems ok (within error bars).

Need to understand low-Q data.

Results will be important for LHC Physics: If broadening effects are observed, then this will have an impact on measurements of the mass and width of W^{\pm} , Z and Higgs.

This observable is an excellent example of using $\ensuremath{\mathsf{HERA}}$ data for the $\ensuremath{\mathsf{LHC}}.$