Resummed vector Q_T distribution in DIS as a probe of small x broadening effects

Yazid Delenda
Supervisor: Dr. Mrinal Dasgupta

University of Manchester

IoP Particle Physics Conference
Warwick, 11 April 2006
Motivation

Q_T distributions are important for studying properties of vector bosons (e.g. W^\pm, Z^0 and the Higgs at the LHC).
Q_T distributions are important for studying properties of vector bosons (e.g. W^\pm, Z^0 and the Higgs at the LHC).

Accurate resummed predictions for these exist up to NNLL accuracy.

G. Bozzi, S. Catani, D. de Florian, M. Grazzini, 2005
Motivation

Q_T distributions are important for studying properties of vector bosons (e.g. W^{\pm}, Z^0 and the Higgs at the LHC).

Accurate resummed predictions for these exist up to NNLL accuracy. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, 2005

Non-Perturbative corrections are modeled in impact parameter space by a Gaussian, whose origin is believed to be intrinsic k_T.
Motivation

Q_T distributions are important for studying properties of vector bosons (e.g. W^\pm, Z^0 and the Higgs at the LHC).

Accurate resummed predictions for these exist up to NNLL accuracy. G. Bozzi, S. Catani, D. de Florian, M. Grazzini, 2005

Non Perturbative corrections are modeled in impact parameter space by a Gaussian, whose origin is believed to be intrinsic k_T.

Do conventional resummed predictions and x-independent NP corrections hold at small x? (BFKL?)
Motivation

Studies of event shape variables in DIS Breit current hemisphere suggest no significant \(x \)-dependent power corrections at relatively small \(x \) (except for jet broadening, whose \(x \)-dependence is not due to BFKL effects).
Motivation

Studies of event shape variables in DIS Breit current hemisphere suggest no significant x-dependent power corrections at relatively small x (except for jet broadening, whose x-dependence is not due to BFKL effects).

However, semi-inclusive DIS q_T (transverse energy) distribution appears to be broadened in impact parameter space, b, by a gaussian:

$$e^{-b^2 \rho(x)}, \quad \rho(x) \sim \frac{1}{x} \text{ at small } x.$$

e.g. S. Berge, P. M. Nadolsky, F. I. Olness, C.-P. Yuan, 2005

Motivation

We choose an observable which is directly related to vector boson Q_T:
Motivation

We choose an observable which is directly related to vector boson Q_T: vector Q_T distribution in DIS Breit current hemisphere.
Motivation

We choose an observable which is directly related to vector boson Q_T: vector Q_T distribution in DIS Breit current hemisphere.

DIS at Born level:
Motivation

We choose an observable which is directly related to vector boson Q_T: vector Q_T distribution in DIS Breit current hemisphere.

DIS at Born level:

$$\gamma^*(q)\rightarrow e^-(l-q)$$

$$e^-(l)\rightarrow\gamma^*(q)\rightarrow r$$

$$p\rightarrow e^-(l-q)$$

DIS standard variables:

$$Q^2 = -q^2$$

$$x = \frac{Q^2}{2P\cdot q}$$

$$y = \frac{P\cdot q}{P\cdot l} = \frac{p\cdot q}{p\cdot l}$$
Motivation

We choose an observable which is directly related to vector boson Q_T: vector Q_T distribution in DIS Breit current hemisphere.

DIS at Born level:

\[Q^2 = -q^2 \]
\[x = \frac{Q^2}{2P.q} \]
\[y = \frac{P.q}{P.l} = \frac{p.q}{p.l} \]

x: momentum fraction of struck quark relative to proton.
Motivation

Breit frame: is the rest frame of $2xP + q$
Motivation

Breit frame: is the rest frame of $2xP + q$
Motivation

Breit frame: is the rest frame of $2xP + q$

Current hemisphere, H_C: has same direction as the photon current direction.

Current hemisphere, H_C: has same direction as the photon current direction.
Motivation

Breit frame: is the rest frame of $2xP + q$

Current hemisphere, H_C: has same direction as the photon current direction.

Remnant hemisphere, H_R: has same direction as the incoming quark direction.
Motivation

Breit frame: is the rest frame of $2xP + q$

Current hemisphere, H_C: has same direction as the photon current direction.
Remnant hemisphere, H_R: has same direction as the incoming quark direction.
Why choose H_C?
Motivation

Breit frame: is the rest frame of \(2xP + q \)

Current hemisphere, \(\mathcal{H}_C \): has same direction as the photon current direction.
Remnant hemisphere, \(\mathcal{H}_R \): has same direction as the incoming quark direction.
Why choose \(\mathcal{H}_C \)?

- Almost empty from non-perturbative remnants of the proton.
Motivation

Breit frame: is the rest frame of $2xP + q$

Current hemisphere, \mathcal{H}_C: has same direction as the photon current direction.
Remnant hemisphere, \mathcal{H}_R: has same direction as the incoming quark direction.

Why choose \mathcal{H}_C?

- Almost empty from non-perturbative remnants of the proton.
- Analogous to one hemisphere in e^+e^-.
Motivation
Comparison between DIS Breit frame and Hadron-Hadron collisions

Incoming leg 1
Hadron-Hadron collision
DIS Breit frame

Incoming leg 2

Outgoing leg

Vector Boson

Q_T distribution

Matching

Conclusions and outlook
Leading Order Q_T distribution

Number of events with $\left| \sum_{i \in H_C} \vec{k}_{Ti} \right| < Q_T$, for small Q_T, is:

$$\frac{\sigma}{\sigma_0} = \frac{\alpha_S}{2\pi} \left(-\frac{1}{2} C_F \ln^2 \frac{Q_T^2}{Q^2} - \frac{3}{2} C_F \ln \frac{Q_T^2}{Q^2} \right. + \left. \frac{P^{(0)}_{qq} \otimes q(x, Q^2)}{q(x, Q^2)} \ln \frac{Q_T^2}{Q^2} + \frac{C_1 \otimes q(x, Q^2)}{q(x, Q^2)} \right),$$

$q(x, Q^2) = \sum_{i}^{n_f} e_{q_i}^2 \left[q_i(x, Q^2) + \bar{q}_i(x, Q^2) \right]$, (PDFs).

$P^{(0)}_{qq} : q \rightarrow q$ LO splitting function.

q : column of PDFs (including gluon density).

C_1 : a row of regular functions (independent of Q_T), calculable in perturbation theory.
Number of events with $\left| \sum_{i \in H_C} \vec{k}_{Ti} \right| < Q_T$, for small Q_T, is:

$$\frac{\sigma}{\sigma_0} = \frac{\alpha_S}{2\pi} \left(-\frac{1}{2} C_F \ln^2 \frac{Q_T^2}{Q^2} - \frac{3}{2} C_F \ln \frac{Q_T^2}{Q^2} \right. $$

$$\left. + \frac{P_{qq}^{(0)} \otimes q(x, Q^2)}{q(x, Q^2)} \ln \frac{Q_T^2}{Q^2} + \frac{C_1 \otimes q(x, Q^2)}{q(x, Q^2)} \right),$$

$q(x, Q^2) = \sum_{i}^{n_f} e_{qi}^2 \left[q_i(x, Q^2) + \bar{q}_i(x, Q^2) \right]$, (PDFs).

$P_{qq}^{(0)}$: $q \rightarrow q$ LO splitting function.

q: column of PDFs (including gluon density).

C_1: a row of regular functions (independent of Q_T), calculable in perturbation theory.

Regular terms in Q_T that tend to zero when $Q_T \rightarrow 0$ can be obtained from a DIS event generator, e.g. DISPATCH:

Restricting real emissions spoils the complete cancelation of infrared and/or collinear singularities between real and virtual contributions to Feynman diagrams.
The smallness of α_S is spoiled by the logarithms.
The smallness of α_S is spoiled by the logarithms. These logs must be resummed to all orders.
Resummed Q_T distribution

Result

\[
\frac{1}{\sigma_0} \frac{d\sigma}{dQ_T} = \frac{1}{q(x, Q^2)} \frac{d}{dQ_T} \left[\left\{ q(x, Q_T^2) + \frac{\alpha_S}{2\pi} C_1 \otimes q(x, Q^2) \right\} \right]
\times e^{\gamma_E h} e^{-\{L g_1(\alpha_S L) + g_2(\alpha_S L) + \alpha_S g_3(\alpha_S L) + \ldots\} \frac{\Gamma(1 + h/2)}{\Gamma(1 - h/2)}}
\]

$L = \ln \frac{Q_T^2}{Q^2}$, γ_E: Euler constant, Γ: Euler Gamma function. h and g_i are functions of $\alpha_S L$.

The expansion of the above equation to $O(\alpha_S)$ gives exactly the leading order result.
Resummed cross-section does not have finite terms in Q_T (important at large Q_T).
Matching

M_2 Matching Scheme

Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:
Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:

- MC is valid when Q_T is large.
Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:

- MC is valid when Q_T is large.
- Resummed result valid when Q_T is small.
Resummed cross-section does not have finite terms in Q_T (important at large Q_T).

Must supply the distribution with Monte Carlo results:

- MC is valid when Q_T is large.
- Resummed result valid when Q_T is small.

Hence we add the resummed result and Monte Carlo result, and remove double counted terms (the Logs and constant C_1).
Matching
Comparison between Matched, resummed and MC results

Differential distributions

- Matched
- Resummed
- MC

$Q_T = 116$ GeV, $x = 0.304453$, $\sqrt{s} = 316$ GeV
Matching
Comparison between Matched, resummed and MC results

Motivation
Leading order Q_T distribution
Resummed Q_T distribution
Matching

Conclusions and outlook
Non perturbative correction to the distribution is a convolution with the gaussian, e^{-kb^2}.
Non perturbative correction to the distribution is a convolution with the gaussian, $e^{-k b^2}$.

k is a constant (at large x at least), and plausibly half of that in Drell-Yan.
Non perturbative correction to the distribution is a convolution with the gaussian, e^{-kb^2}.

k is a constant (at large x at least), and plausibly half of that in Drell-Yan.

By comparing to small x data, our plots should reveal any dependence of k on x.
Resummed (and matched) results exist.
Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication
Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

High-Q ($\gtrsim 50$ GeV) preliminary comparison to data seems ok (within error bars).
Outlook

Conclusions

Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

High-$Q_T (\gtrsim 50 \text{ GeV})$ preliminary comparison to data seems ok (within error bars).

Need to understand low-Q data.
Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

High-Q ($\gtrsim 50$ GeV) preliminary comparison to data seems ok (within error bars).

Need to understand low-Q data.

Results will be important for LHC Physics: If broadening effects are observed, then this will have an impact on measurements of the mass and width of W^\pm, Z and Higgs.
Resummed (and matched) results exist.

Data from H1 at HERA (ZEUS?) exist, but work is still needed to improve the error bars and size of the bins.

T. Kluge, private communication

High-Q_T ($\gtrsim 50$ GeV) preliminary comparison to data seems ok (within error bars).

Need to understand low-Q_T data.

Results will be important for LHC Physics: If broadening effects are observed, then this will have an impact on measurements of the mass and width of W^\pm, Z and Higgs.

This observable is an excellent example of using HERA data for the LHC.