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The Model

Motivation
Neutrino oscillations imply neutrino masses which aren’t included
in the standard model.
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• Minimal model including neutrino masses.

• Can’t add a left-handed Majorana mass term without further
extensions to the standard model (e.g. a Higgs triplet).



Particle Spectrum
This gives six mass eigenstates that are Majorana particles.(
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U is a 6× 6 unitary matrix that mixes the SU(2)L eigenstates into
states with definite mass.
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• Non-diagonal elements allow lepton flavour violation (c.f.
flavour changing in quark sector).

• Can also have mixing between the charged leptons, but no
Majorana mass terms.



The See-Saw Mechanism

• mD is assumed to be O(Higgs vev) ≈ 102 GeV.

• mM is assumed to be O(GUT) ≈ 1016 GeV.

• Light neutrino masses generically predicted to be

O(
m2

D
mM

) ≈ 10−3 eV.

• Heavy neutrino masses O(mM).

• Couplings of heavy neutrinos to SM particles suppressed by
O( mD

mM
).

• Flavour symmetries can allow mN ∼ 100 GeV without large
suppression of the couplings.
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Lagrangian

Expressing the interaction Lagrangian in terms of mass eigenstates:
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• B is the lepton equivalent of the CKM matrix.

• There can also be flavour changing in neutral current and
Higgs field interactions but only for neutrinos.

• Majorana nature of neutrinos allows lepton number (not just
lepton flavour) violation.



Low Energy Constraints

Constraints on B from lepton universality and the Z width give
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3∑

i=1

Blνi
B∗

lνi
=

3∑
i=1

BlNi
B∗

lNi

<∼ 10−2

Further constraints come from FCNC limits.
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|Ωeµ| <∼ 0.0001 |Ωeτ | <∼ 0.02 |Ωµτ | <∼ 0.02



Production Mechanisms

e+e− collider
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• Hard to determine if neutrinos are Majorana particles.

e−γ collider
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• LNV signal (for N → l+W−, W ’s decaying hadronically).

• BeN could be zero (or at least very small).
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• LNV signal (for N → l−W +, W ’s decaying hadronically).

• Don’t rely on heavy neutrinos coupling to electron.

• Far smaller cross-sections.
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Example Cross-Sections
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Figure: e−γ → W−N
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Figure: e−γ → Nµ−ν

• “Best case” scenarios.

• Need to multiply by branching ratios.



CP violation

• Neutrinos mix through their self-energy.

• Interference between tree-level graphs and one-loop
self-energy transitions induces CP violation.
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• Effect can be resonantly enhanced for mass differences of
order the neutrino widths.

• Leptogenesis → baryogenesis → cosmological baryon
asymmetry.


