Calibration in the MINOS Detectors

Justin Evans
University of Oxford
IoP: Particle Physics 2006, Warwick
11th April 2006

Introduction

- Calorimetric energy measurements in MINOS detectors
- Measuring calorimetric energy resolution
- Calibrating temporal drifts in detector response
- Calibrating spatial variance in response
- Obtaining absolute energy scale

The MINOS Experiment

- Long-baseline neutrino oscillation search
- v_{μ} beam at Fermilab
- Near Detector at Fermilab
 - v_μ energy spectrum before oscillations
- Far Detector 735 km away
 - Soudan mine
 - Oscillated v_{μ} energy spectrum

The MINOS Detectors

Measuring Neutrino Oscillations

- Measuring Δm^2 of neutrino eigenstates
- Measure oscillated and unoscillated neutrino spectra
- Position of dip (in energy) tells us Δm^2
- Require accurate measurement of neutrino energy

Measuring Neutrino Energy

- Neutrino interacts through CC or NC
- Produces hadron shower and muon (in CC case)
- $E_v = E_\mu + E_{\text{shower}}$
- Accurate v_{μ} energy measurement requires
 - Accurate μ energy
 - Accurate hadronic shower energy
- Muon energy from range or curvature in B-field
 - Resolution 6% from range, 12% from curvature
- Hadronic energy from calorimetry
- MINOS detectors have no source of known-energy particles
 - Makes calibration difficult

Calibration Detector

- 60-plane detector built at CERN
- Same steel-scintillator structure and readout electronics as other MINOS detectors
- Fired beams of knownenergy muons, electrons, pions, protons through it
- Relate hadronic and electromagnetic energy response to muon response
- Measure of detector resolution for hadrons and electrons

Temporal Drift of Detector Response

- Scintillator response decays with time
- PMT response changes with time
- Scintillator & PMT responses temperature dependent
- Hardware swaps in electronics alter detector response

Drift Calibration

- Use through-going cosmic muons
- Record energy deposited per plane
- Path-length correction
 - Muons not perpendicular to planes
- Take median energy deposited per plane over 1 day
 - Median removes high-energy fluctuations
 - e.g. muon bremsstrahlung
- Tracks drift of entire detector response
 - Precision of 1 day

Drift Calibration Results

- Far Detector
- ~17,800 muons per day
- ~4% decay in response over
 2.5 years
- ~1% response change per °C

Drift Calibration Results

- Near Detector
- ~260,000 muons per day
- No definite decay in response over 10 months
- ~1% response change per °C

Spatial Response Calibration

- Different scintillator strips give different responses
- Different readout fibres give different responses
- Hits nearer readout end of strip give higher response
- Shine light onto fibres on test-stand to measure attenuation
- Use position of cosmic muon hits to calibrate strips in detector

Absolute Energy Scale

Use stopping cosmic muons to relate detector response to GeV

- Muons deposit energy per plane
 - Bethe-Bloch formula
- Select tracks to be entering and stopping in detector
- Path-length correction
 - muons not perpendicular to planes
- Count back 95 cm from track end
- Over next 83 cm, energy deposited changes by only 4%
- Gives a measure of muon energy response
- Gives an absolute energy scale

Conclusion

- Measured calorimetric energy resolution
 - Calibration detector
- Measured drifts in detector responses over time
 - Cosmic muons
- Measured spatial variance of detector response
 - Cosmic muons
- Measured absolute energy scale
 - Stopping cosmic muons
- Final absolute energy uncertainties
 - Far Detector: 3.5%
 - Near Detector: 2%
 - Detector to detector: 3%