
Mapping the Magnetic Field of the ATLAS Solenoid

Paul S Miyagawa University of Manchester

- ATLAS experiment + solenoid
- Objectives
- Field mapping machine
- Simple field model
- Machine performance
- Realistic field model
- Conclusions + future plans

ATLAS Experiment

- LHC will produce proton-proton collisions:
 - cms energy 14 TeV
 - 25 ns bunch spacing
 - 1.1 × 10¹¹ protons/bunch
 - design luminosity 10³⁴ cm⁻²s⁻¹
- ATLAS is a general-purpose detector:
 - diameter 25 m
 - length 46 m
 - overall mass 7000 tonnes

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

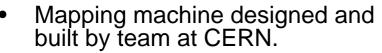
MANCHESTER 1824

- Point 2

ATLAS Solenoid

- Solenoid built from 4 coils welded together to give a single coil:
 - 1159 turns
 - length 5.3 m
 - radius 1.25 m.
- Operated at 7600 A to produce an axial field of 2 Tesla at centre of solenoid.
- Return current cable runs along surface of solenoid containment vessel.
- Cables are routed through a magnetically shielded chimney to the power supply.

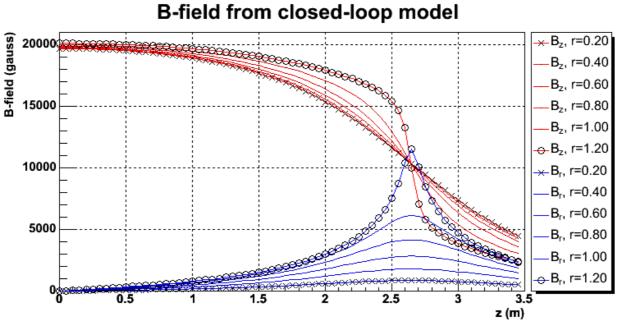
MANCHESTER


The University of Mancheste

Objectives

- A useful test of the Standard Model would be measurement of *W* mass with uncertainty of 25 MeV per lepton type per experiment.
- W mass derived from the position of the falling edge of the transverse mass distribution.
- Momentum scale will be dominant uncertainty in *W* mass measurement:
 - Need to keep uncertainty in momentum down to ~15 MeV.
- Measure isolated muon tracks with $p_{\tau} \sim 40$ GeV over large range of η :
 - Uncertainty in energy loss negligible.
 - Concentrate on alignment and B-field.
- Momentum accuracy depends on $\int r(r_{max} r)B_z dr$:
 - Field at intermediate radii, as measured by the sagitta, is most important.
- Typical sagitta will be ~1 mm:
 - Limit on silicon alignment, even with infinite statistics and ideal algorithms, will be ~1 $\mu m.$
 - Field mapping team targets an accuracy of 0.05% on sagitta to ensure that Bfield measurement is not the limiting factor on momentum accuracy.

- Two propeller arms which rotate in ϕ .
- Carriage slides in *z* along rails.
- 48 Hall probes on both sides of both arms.
- Cross-checks between probes on opposite sides of same arm.
- Also have cross-checks between arms.
- Machine measures field inside solenoid before Inner Detector installed.
- Also have 4 NMR probes permanently fixed to solenoid to set overall scale.
- An additional NMR probe fixed to machine carriage.



MANCHESTER

The University

Simple Field Model

- Basis of model is field due to a single coil of nominal dimensions:
 - Modelled as a series of closed circular loops evenly spaced in *z*.
 - Each loop approximated as a series of straight-line segments, and Biot-Savart law applied to each segment.
- Added in field due to magnetised iron outside the solenoid (4% of total field).
- Model is symmetric in ϕ and even in *z*.

11 April 2006

MANCHESTER

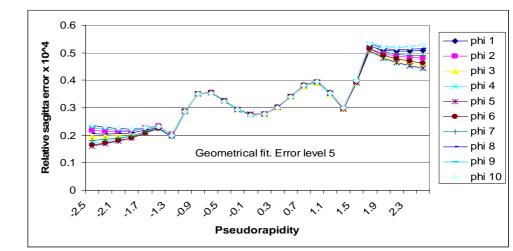
The Universi of Manchest

Mapping Machine Simulation

- The Universit of Mancheste Simulated performance of mapping machine during a typical scan:
 - Included periodic measurements at calibration points near centre and end of solenoid.
 - Added various errors to simulated data:
 - Random measurement errors of solenoid current and B-field.
 - Random walk drifts of solenoid current and Hall probe measurements.
 - Random calibration scale and alignment errors of Hall probes.
 - Displacement and rotation of solenoid field relative to mapping machine axis.
 - Systematic rotation of Hall probes.

MANCHESTER

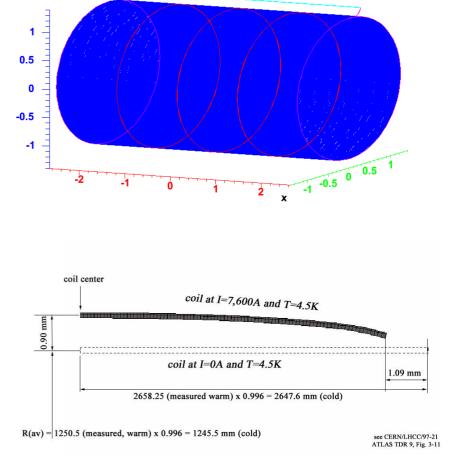
Field Fitting



- First, correct for drifts in solenoid current and Hall probe measurements.
- Calibrated data fitted with two methods:
 - 1. Geometrical fit
 - Sum of simple fields known to obey Maxwell's equations
 - Long-thin coil (5 mm longer, 5 mm thinner than nominal)
 - Short-fat coil (5 mm shorter, 5 mm fatter)
 - Four terms of Fourier-Bessel series (for magnetisation)
 - Use Minuit for χ^2 fit to data
 - Fit gives information about position, shape, etc of coil
 - 2. Fourier-Bessel fit
 - General fit able to describe any field obeying Maxwell's equations
 - Uses large number of parameters obtained by direct calculation
 - Calculate Fourier terms from B_z on outer cylinder
 - Fit hyperbolic terms to ends of cylinder
 - Fit B_r to find z-independent component of field
 - Poor fit indicates measurement errors rather than incorrect model
- Results from fit used to calculate corrections for Hall probe normalisation and alignment.

Fit Quality

- Quality of fit measured by comparing track sagitta in field model with track sagitta in fitted field.
- Both fits accurate within target level of 5×10⁻⁴.
- Probe normalisation and alignment (PNA) correction improves fits.



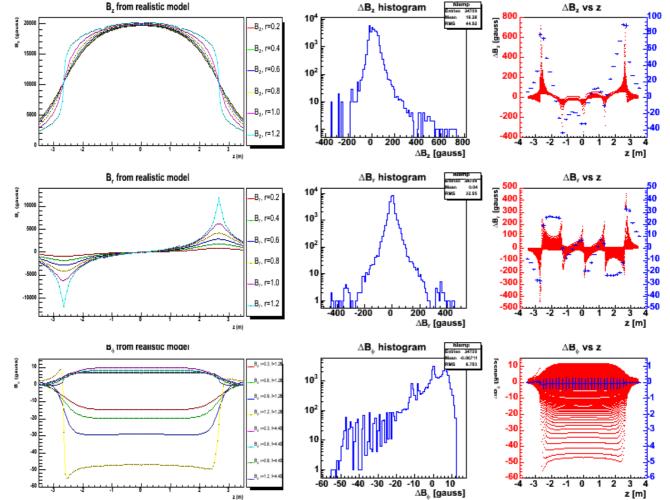
Fit	PNA corr	Relative sagitta error / 10 ⁻⁴					
		Mean	Rms	Max	Min		-∎- phi 2 -▲- phi 3
Geom	No	-0.99	2.42	2.44	-4.62		→ phi 4 → phi 5 → phi 6
Geom	Yes	-0.97	1.04	-0.43	-1.70	χ ² χ ² χ ³ χ ⁵ 5 χ ⁵ χ ⁵ <t< td=""><td> phi 7 phi 8</td></t<>	phi 7 phi 8
F-B	No	-3.32	4.43	5.59	-11.52		phi 9 phi 10
F-B	Yes	-2.79	3.61	4.20	-10.70	-6 Pseudorapidity	

MANCHESTER

The University of Mancheste

- field
- Developed realistic field model which makes several improvements over the simple field model.
 - Modelled the actual current path:
 - four main coil sections, each as a helical coil
 - welds between main sections
 - welds at end of solenoid
 - return current conductor
 - Modelled real shape of solenoid:
 - shrinkage due to cool down
 - bending due to field excitation

MANCHESTER


Field from Realistic Model

Comparisons with previous model:

MANCHESTER

The Universit

- Most adjustments to B_z and B_r components are O(10 gauss).
- Greatest
 adjustments are at
 boundaries (coil
 ends, weld regions).
- See effects of different pitches of each coil section.
- Return cable has greatest effect on B_{ϕ} component.

11 April 2006

IoP Particle Physics 2006

11/14

Conclusions

- The University of Manchester Solenoid field mapping team will measure the solenoid magnetic field with a target accuracy of 0.05% on the sagitta.
 - A propeller-type mapping machine has been designed and built, and its performance simulated.
 - Two fitting methods (geometrical + Fourier-Bessel) have been developed:
 - Tests with a simple field model show that both fits meet the target accuracy.
 - These fits can form the basis for more detailed fits suitable for the actual field
 - A realistic field model has been developed and makes several improvements over the simple closed-loop model:
 - Models the actual current path.
 - Models real shape of solenoid.
 - Comparisons made with previous model:
 - Most adjustments are O(10 gauss).
 - Greatest adjustments are caused by features of realistic model (coil) ends, weld regions, different pitches, return cable).

- Study performance of field mapping machine and fitting routines using realistic field model.
- Field mapping machine commissioned underground during April + May 2006.
- Data taking scheduled for June 2006.
- Final field map prepared for September 2006.

Acknowledgements

- The Universition of Manchest Martin Aleksa (project coordinator)
 - Marcello Losasso (engineering design)
 - Felix Bergsma (Hall probes + motors)
 - Heidi Sandaker (DAQ)
 - Steve Snow (NMR probes + software)
 - John Hart + Paul S Miyagawa (software)