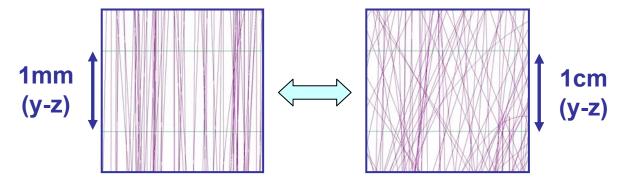
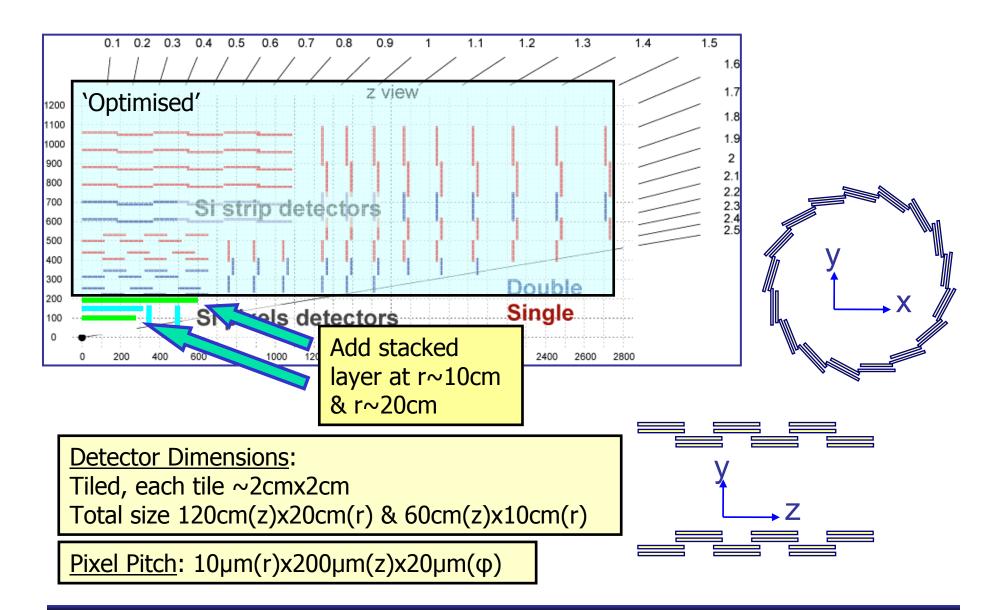

A Level-1 Tracking Trigger in Super-LHC

CMS and The Super LHC

- Current CMS trigger is designed for 'clean' (relatively unambiguous) signatures
 - Higgs → Muons, di-photons, (jets, 4 leptons)
 - SUSY \rightarrow Missing E_T, leptons, (topological jet triggers)
- 1st level of triggering in CMS has to perform fast, complex calculations in ~1.5µs
- Design of trigger was driven by many constraints
 - Money, power, cabling, radiation tolerance, hardware capability, speed, availability
- It has been proposed that LHC be upgraded x10 nominal luminosity in 2015
 <u>10³⁵cm²s⁻¹</u>
- Requires an improvement in detector performance to allow efficient triggering
- It is widely believed that CMS requires tracking information in L1 trigger in the future
- Tracker is not currently used for many reasons
 - Data rate is too great, even for nominal LHC environment
 - In upgrade, rate at r=10cm is <u>~10Gbit/cm²/s</u> when zero-suppressed


What Does It Looks Like? (Why It's A Problem)

- Leptons, photons and pions look like jets (lack of isolation)
 - Incorrect energy, no isolation, miss-identification
- Jets look like clusters of jets (lack of isolation)
 - Incorrect count, incorrect energy, incorrect missing E_T
- Muon chambers lose ability to threshold rate of trigger based on p_T of track
 - Inability to control single-muon trigger rate (although not certain we use this in SLHC)
- Bandwidth of DAQ system increases x10 if trigger rate same as current LHC
 - If we allow trigger rate to increase, requirement grows x100 UNACCEPTABLE


What Do We Want To Do?

- We want tracker information in the L1 trigger in SLHC (at least a '<u>stub</u>')
- Purity of reconstructed tracks isn't important...
 - ...provided reconstruction efficiency for 'interesting' tracks must be very high

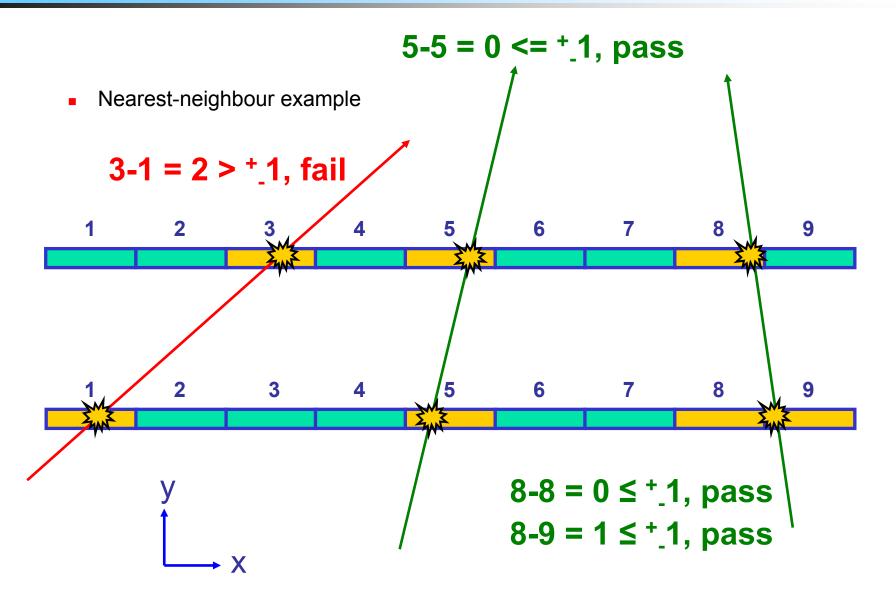
- Propose to use two <u>closely-spaced</u> electrically coupled pixel detectors in a <u>stack</u>
 - Reduces combinatorials to manageable levels (<u>J. Jones</u>, <u>A. Rose</u>, <u>C. Foudas</u>)
 - Design can be introduced into current CMS tracker with minimal disturbance
- Reduce the data-rate <u>on-detector</u> with a <u>geometrical p_T-cut</u>
 - + Lower power consumption (than reading everything out)
 - +~100Mbit/cm²/s optical links (reduced cabling requirements)
 - + Close electrical coupling avoids the need for detector-wide communication
 - Cannot be used to infer p_T using only one stack
 - Places strict demands on mechanical aspect of design
 - Material budget of detector must not increase significantly

Possible Detector Layout

Tangent-Point Reconstruction

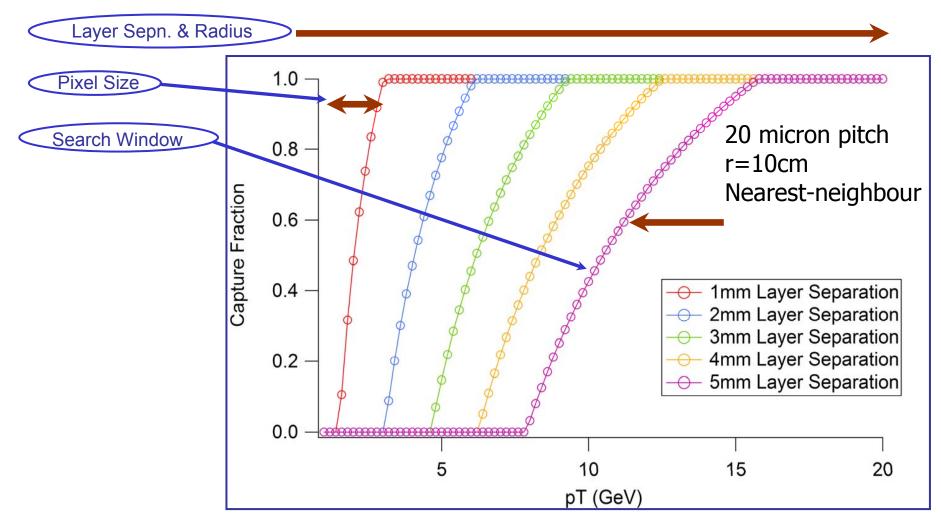
- Assume IP r=0
- Angle α determines p_T of track

Smaller α = greater p_T


- Can find high-p_T tracks by looking for small angular separation of hits in the two layers
- Correlation is fairly 'pure' provided separation is small and pixel pitch is small

Matching hits tend to be from the same track

- If sensors are precisely aligned, column number for hit pixels in each layer can be compared
- Finding high-p_T tracks becomes a relatively simple <u>difference analysis</u>


ά

Difference Analysis in Practice

p_T Cuts in a Stacked Tracker – **p_T Cut Probabilities**

Depends on:

There is an additional 'blurring' that is caused by charge sharing...

Monte Carlo Results – Purity / Data Rate (Minimum Bias)

Just showing 200 events / BX as an example (10³⁵@40MHz)

					These should be lower – subtle effect				
Layer	Threshold	Window	Purity %	ó o	Purity %		Data Rate %	Data Rate	e %
Sepn		Size (PIX)	R=10cn	n /	R=20cm		R=10cm	R=20cm	
1mm	Low	2	81.2	Τ	76.7	Τ	12.2	3.19	
1mm	High	2	78.2	ļ	72.0		9.82	2.45	
1mm	Low	1	88.4		90.7		6.80	1.66	
1mm	High	1	82.9		81.5		4.83	1.13	
2mm	Low	2	21.7		9.15		5.77	1.68	
2mm	High	2	17.2		7.56		4.79	1.40	
2mm	Low	1	43.9		31.6		3.54	1.06	
2mm	High	1	27.1		13.6		2.69	0.84	

- Is better at 100 events / BX (10³⁵@80MHz) lower occupancy...
- I also simulated 500 events / BX (5x10³⁵@80MHz!)
 - Still appears to work

Key Differences w.r.t The Current Tracker

- Pixels are <u>stacked</u>
 - Electrically coupled
 - No long-range (>mm) inter-layer communication
 - Reduces combinatorials
 - Speeds up reconstruction
 - Allows p_T cut in hardware placed on-detector to reduce data volume
 - ~x10-x100 depending on tradeoffs
 - Results in <u>asynchronous processing</u> (variable data rate)
- Shape of pixel is <u>significantly</u> elongated
 - \sim 20µm (phi) x 200µm (z) x 10µm (sensitive thickness could be bigger)
 - Phi pitch and thickness are critical
 - Hit needs to be localised in (r-phi) as otherwise thickness of region has a serious impact on sensor resolution / p_T cutting
 - Also need to minimise charge spread to reduce data rate
 - z resolution (pitch) can (has to be) be optimised for power / ECAL resolution
- You <u>can't compute p_T</u> with just one stacked layer
 - Unless matched with muon tracks or calorimeter hits...
 - ...or double stack

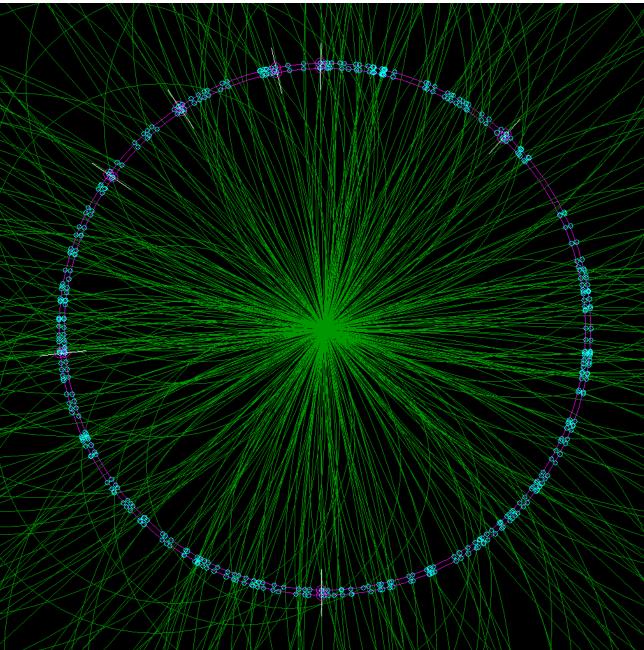
The Double-Stack Method

- Close space minimises combinatorials in each layer and allows p_T cut to be applied 'easily' <u>on-detector, but in each stack separately</u>
- Separation between two stacks allows <u>calculation of p_T (albeit crudely)</u>
- Can also do <u>z-vertexing</u>
- Also cleans up reconstruction

R=10cm & 20cm

Summary

- Designing a pixel sensor for SLHC presents a lot of challenges
 - But stacked approach limits readout rate leaving detector
 - Manageable data rates leaving detector
 - Reduces combinatorials
 - Allows fast reconstruction
 - Demonstrated by toy Monte Carlo (full study planned)
- Reconstruction algorithm demonstrated in Imperial College (<u>B. Constance</u>, <u>K. Zhu</u>)
 - Very, very fast (~3BX = 75ns)
 - Implemented for IDAQ
 - FPGA-based generic DAQ board derived from CMS APV25 emulator
 - G. Iles, J. Jones
 - Algorithm currently being optimised
- Plans to build a prototype correlation \rightarrow link \rightarrow reconstruction system
 - Based on IDAQ & GCT Source Card (<u>J. Jones</u>, <u>A. Rose</u>)
 - Possible large-scale prototype based on GCT Leaf Card (<u>M. Stettler</u>)
- Many promising sensor technologies under investigation (MAPS, TFA, Hybrids)


A Toy Monte Carlo...

In the interest of speed (a Convert ntuples via H2R0 Solve tracks for barrel reg

- Includes z vertex blu
- Includes primitive cl
- Doesn't include had
- ...but still useful for
- Could extend up to

Simulates threshold trigg 100 & 200 events/bx 1 & 2-pixel search windov Low and high comp. thres

Simulates detector overla get an (over-)estim Simulates online reconstr

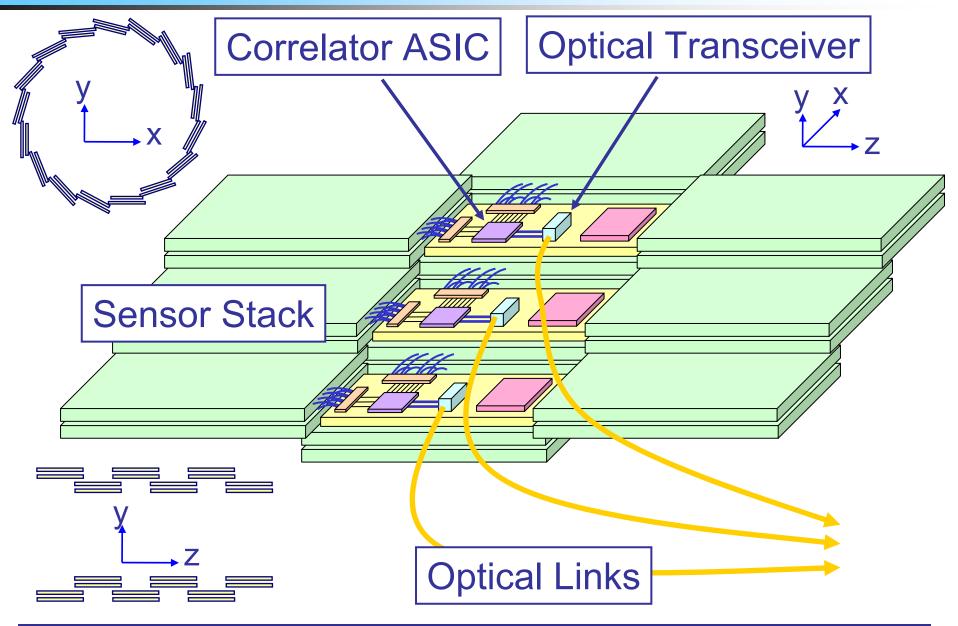
How Big A Sensor Do We Need?

Length requirement comes from lack of information about z co-ordinate for IP Determines required detector overlap (only when using correlation ASIC) Effect is strongest in the forward region Assume maximum coverage is $|\eta|=1.4$ @ r=10cm For +-15cm, we need >7.2mm sensors in z For +-8cm, we need >3.6mm sensors

The larger the sensor, the longer the propagation delay

This is the real killer when designing a designing a Level 1 Triggering pixel system for SLHC (or LHC even)

z = -15 cm


7 = 0

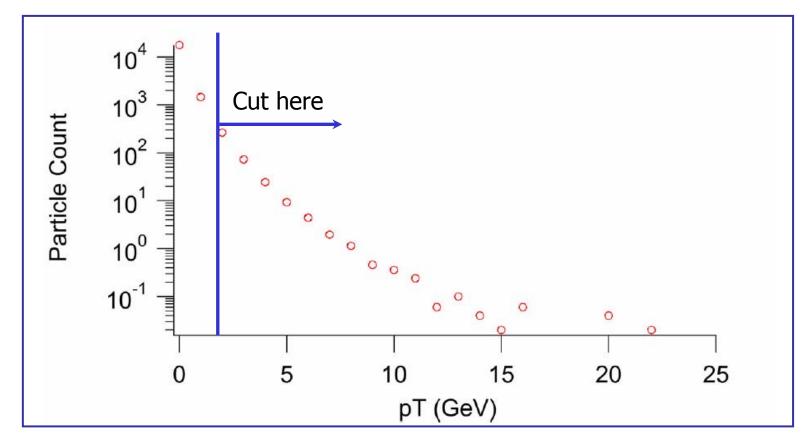
How do we find the hits in 12.5ns and reset the pixels with minimal deadtime?

D

z=+15cm

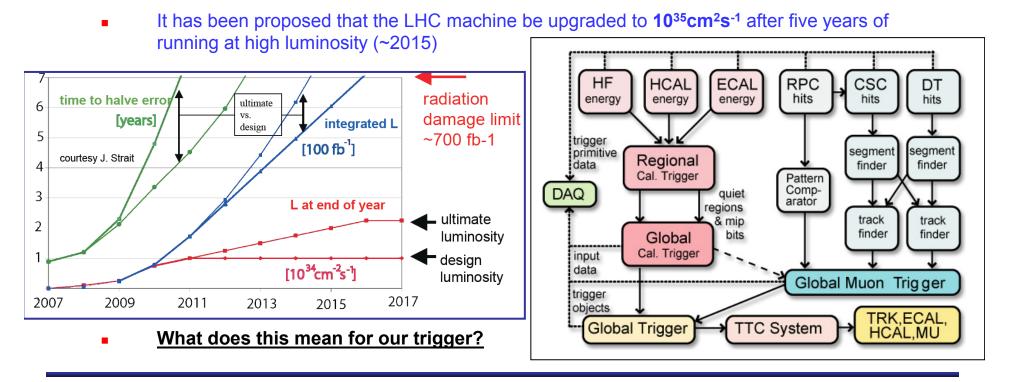
Conceptual Design

Getting A Handle On Trigger Rate...


- Not only do we want to reduce trigger rate at L1 due to hardware constraints...
- ...we also want to be able to trigger selectively
- It is likely that we will use more complex (topological) triggers later in the physics programme
- Well we've used the ECAL (not to be replaced), HCAL (not to be replaced) and muon systems (possible upgrade), so what's left?

Tracker (Why Not? It won't survive anyway...)

- But why not before?
- CMS tracker is 12-barrel-layer analogue & all-Silicon
- Some physical limitations are:
 - Power 30kW
 - Cabling ?? (and shared signal/power)
 - Mass budget ~1.4X₀ at worst
 - Electronics performance Can we just build it first please??!!
 - Radiation damage up to 30MRad, 10¹⁵p/cm²
- Some triggering limitations are:
 - **SLOW**... Kalman filter too slow, GSF even worse (and both are iterative)
 - Analogue readout makes high-speed processing impossible
 - Too much data to get out of detector (needs to be zero-suppressed)
- So, we change the design...


Tracker Data Rate & Charged Particles vs. p_T

- Mean distribution of transverse momenta for charged particles at SLHC
 - Pythia 6.2772; 10,000 min. bias events via CMKIN 4.2, standard datacard
- By the time we cut at ~GeV, we've removed a lot of the background
 - Having said that, minbias doesn't include high- p_T leptons (and neither do I)
 - Leading order QCD is misleading, but close enough to demonstrate principle?
- Data rate in pixel layer (r=10cm) is ~5-20Gbit/s/cm² (!!!!)

The CMS L1 Trigger

- Separate muon & calorimeter trigger systems feed a global trigger
- Expected final trigger rate ~100kHz at high luminosity LHC running (10³⁴cm²s⁻¹)
- Current trigger primitives are:
 - Muons in chambers (with crude p_T)
 - Isolated photons in ECAL (or electrons they look the same as there isn't a tracker)
 - Jets (with tau veto) depends on number, isolation & clustered energy in calorimeter
- It is expected that this design will be able to 'handle' the current trigger rate efficiently

Sensor Implementation Problems

Radiation Tolerance

100MRad & 2x10¹⁵ worst-case?

Speed

- All hits need to be identifiable within 25ns (preferrably 12.5ns)
- Better if hits can reach periphery of chip within this time frame otherwise need in-pixel time-stamping and complicates readout pipeline
- Alternatively each pixel needs a small buffer & overflow handling
- Design should probably be <u>asynchronous</u>
 - Not as mad as it sounds
 - <u>A large part of the current CMS pixel detector is already asynchronous</u> and running at > 3GHz

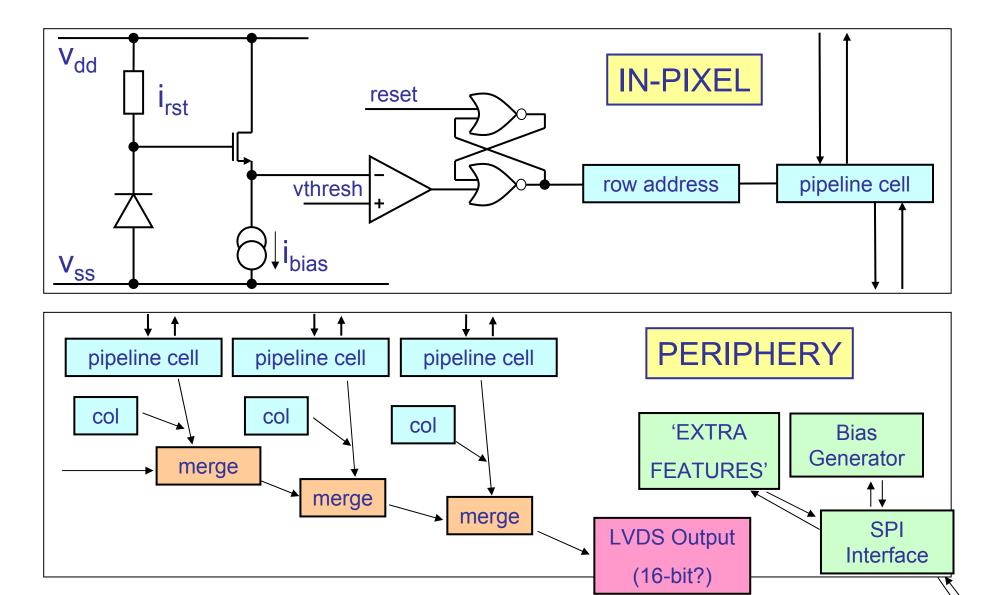
Power

- Would be nice to aim for similar power budget to current pixel ROC
 - << 40µW/pixel</p>

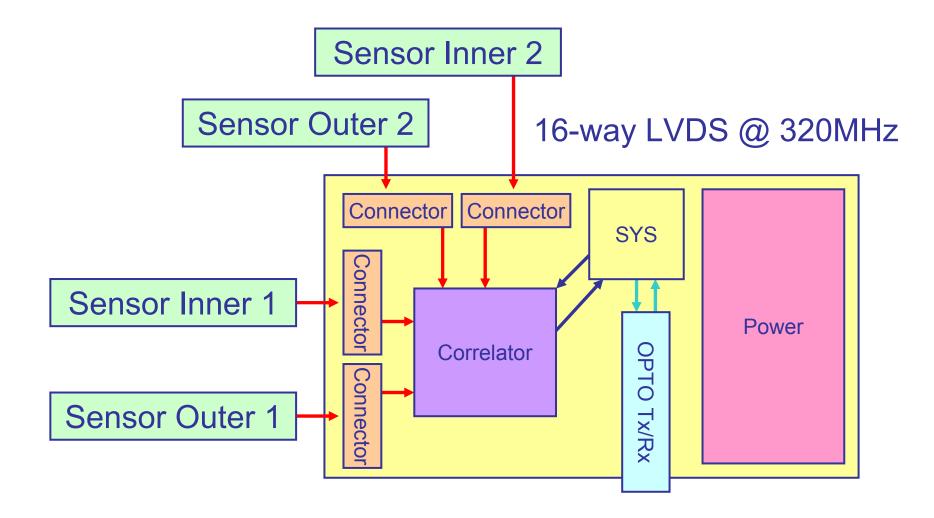
Complexity

In pixel electronics is limited by space & fill factor in some cases (MAPS)

Power Consumption (ESTIMATE)

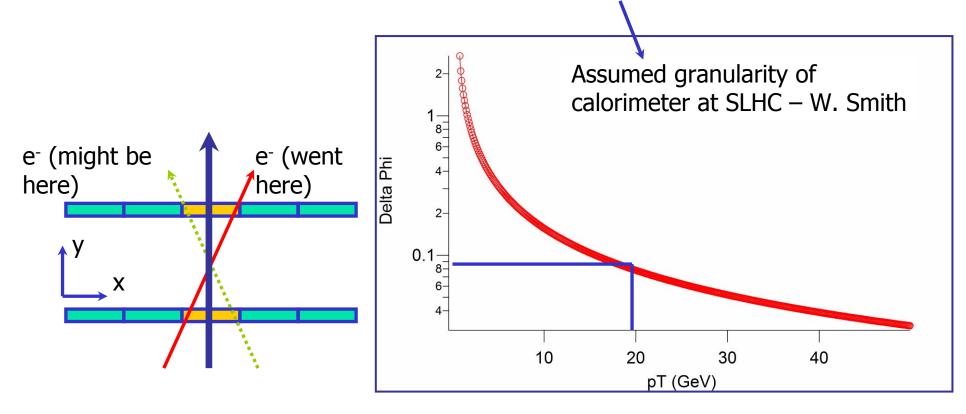

Module	Single Layer	Stack (Correlation)		
	(No Correlation)			
Optical Driver	1W(10G)*4562cm ² =4.5kW	4.5kW/50=90W		
Pixels (20x50)	10µW/pixel*4562cm ² =4.5kW	11.4kW		
Pixels (20x200)	10µW/pixel*4562cm ² =1.13kW	1.13kW		
Pixels (40x150)	10µW/pixel*4562cm ² =0.75kW	0.75kW		
Correlator	N/A	<< Pixel sensor (but I don't know)		
TOTAL	~12kW (2 layers)	~4kW? (2-layer stack)		

Power consumption of pixel sensor is largely dependent on in-pixel comparator?

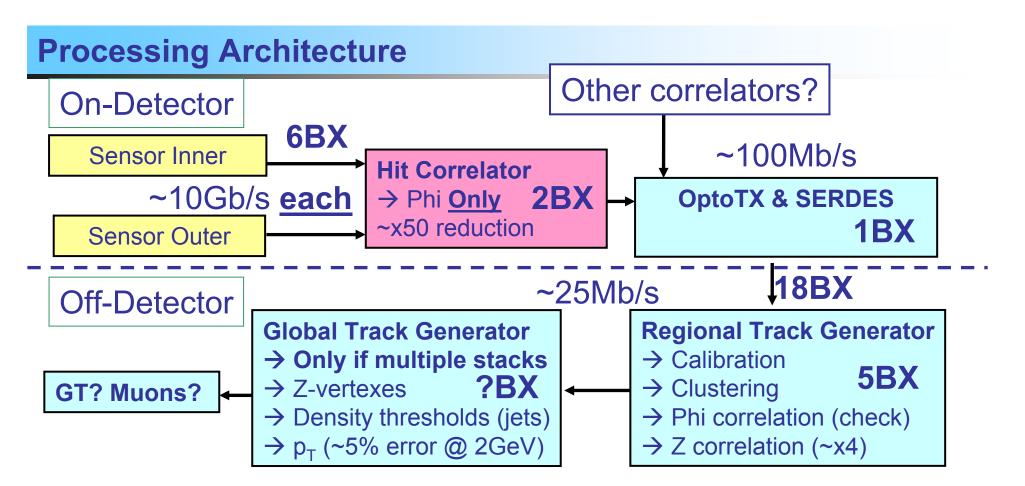

High-speed laser diodes consume a lot of power?

Correlator shouldn't consume a lot of power I assume ~220mW / cm² here

A 'Straw Man' Module (II) – Pixel Sensor (CRUDE!)

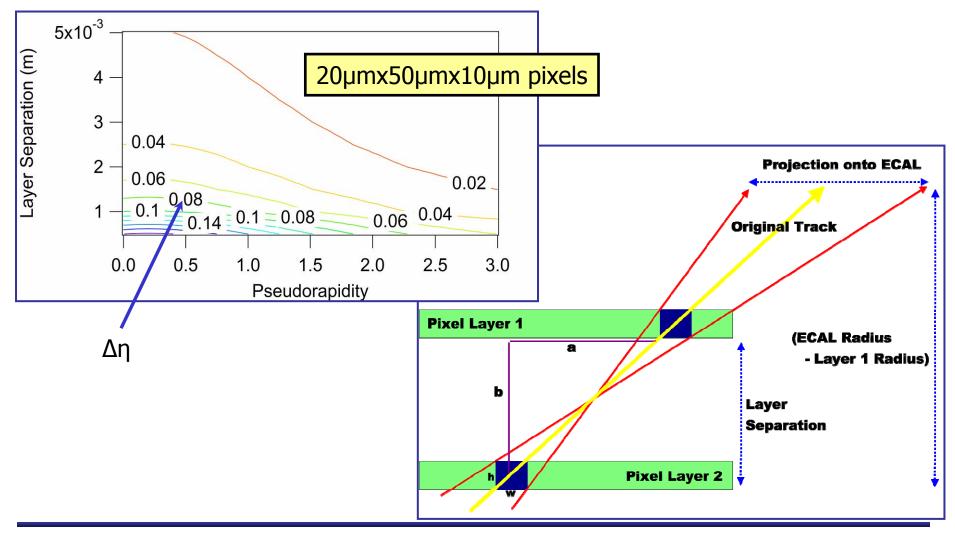

A 'Straw Man' Module (III) – Support Board

Worst-Case Resolution in φ



- Layer sepn. ~1mm, pitch 20 microns, r=10cm
- Distance to ECAL ~1.3m
- Worst-case error is ~20 microns * 1.3 / 0.001 = 2.6cm
- Or $\Delta \phi \sim atan(0.00002 / 0.001) = 0.02 rad (good enough)$
- BUT lack of p_T information is more important only <0.087 for p_T > 18GeV

'Hard' Requirements and Investigations

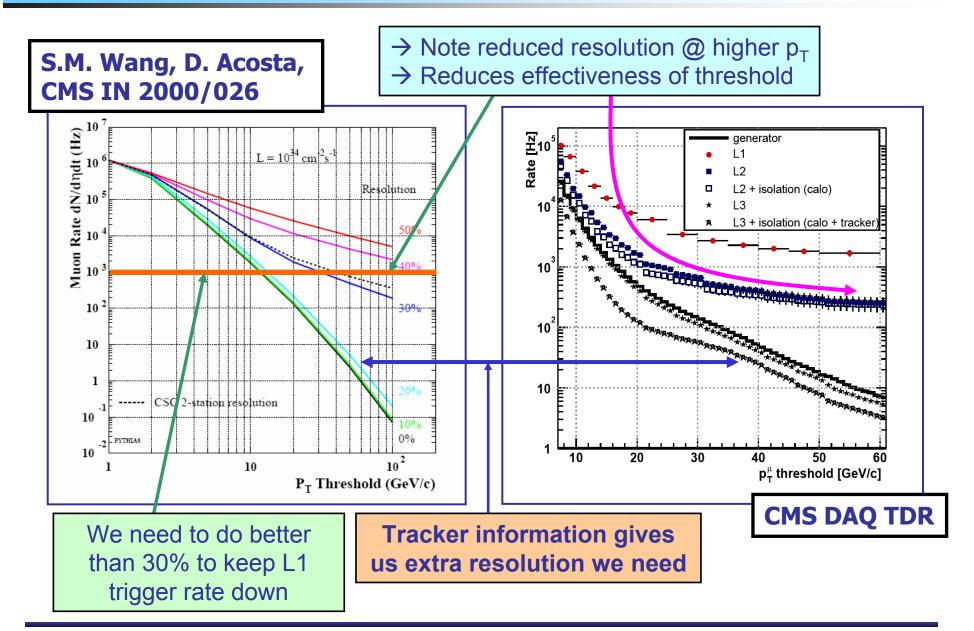

- I'll leave the technology choices to the other discussions...
- Close to 100% fill factor is highly desirable for a pixel detector in CMS
 - Is MAPS suitable? Will fill factor reach an acceptable level?
 - Can hybrids be used for this approach?
 - Will TFA become standard?
- DSM should be sufficient for speed requirements (other technologies?)
- In-pixel power requirement needs to be minimised
 - Mostly power drawn by comparator?
 - It does not appear that correlator will use a significant fraction of the power
- Currently looking at ways of making the design more feasible
- Slower charge collection, preshaper and in-pixel comparator (e.g. 50ns)
 - Pileup becomes a (minor) problem, but possibly not a show-stopper
- Slower readout achieved by bunch tagging in-pixel
 - Readout cycle allowed to take > 1 LHC clock count
 - 4-clock hit buffer makes timing much easier
- Lots of parts of this can be adapted/reused from current CMS pixels / other projects?

- Recent result: Reconstruction algorithm implementation at IC
 - B. Constance & K. Zhu
 - 1 stack uses <1% of an XC2VP70-7 @ 120MHz (unpacked)</p>
 - Reconstruction latency (internal to FPGA) = ~3 BX ③
 - Extrapolating, need <u>~36 XC2VP70s</u> for a full system
 - Investigating in more detail...(can be optimised a lot) assumes sorted hits

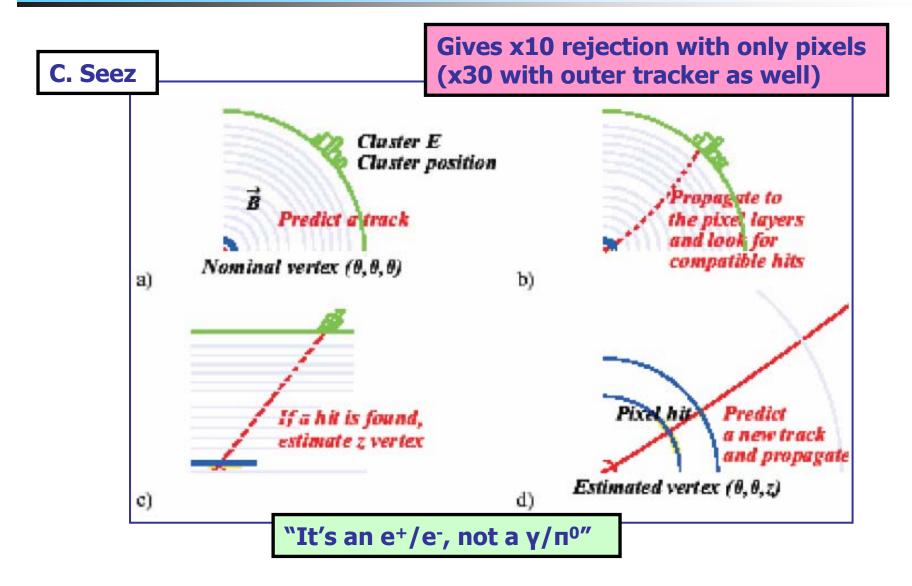
Worst-Case Resolution in η

- Project range of possible track paths on to ECAL and show effect on $\Delta \eta$
- Can be made roughly equal-size to current calorimeter trigger tower

Double Stack Reconstruction


- Cut hits in each region individually
- Could match by binning in r/sin(β)
 - But β is related directly to α...
- ...intersection angle (α) not used due to limited d.o.f.s
- Project cone backwards from outer stack
 - Can also use z-information
 - Also gives z-vertex of track

 β_2

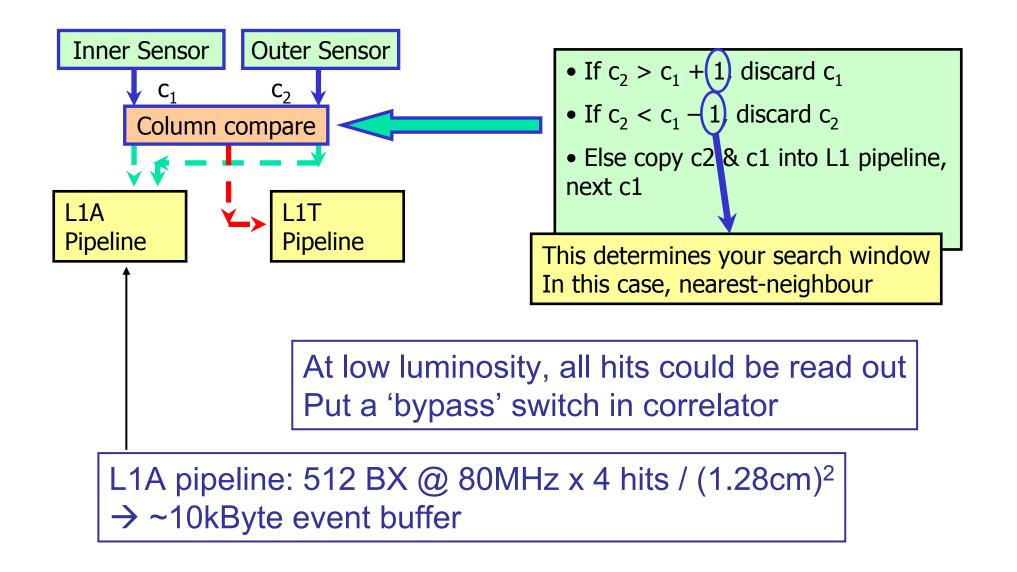

Double Stack p_T Measurement

- Tangent itself doesn't give you much information
 - Throw it away... (after all that work! ⓒ)
- Use centre-point of each pair to measure sagitta
 - Calculate p_T in the usual way... (assuming r=0)
- Should give p_T up to 100GeV (50% error)
 - Only back of envelope calculation (so far)
 - Study underway
 - Gets better at low p_T
- Can be used for low-p_T (1-2GeV) jet tracks?
 - Is this important?

Muon Triggering

Calorimeter Electron Triggering

Calorimeter Jet Triggering


11.4.06

Data Rate for SLHC pixels @ r=10cm

- Pixel occupancy in SLHC ~4 hits / (1.28cm)² @ 80MHz BX (or 8 @ 40MHz)
- Assume 20-bit pixel coding scheme (1024x1024 array)
- Base data rate is 80x10⁶ x 4 x 20 / (1.28)² = 3.9 Gbit/cm²/s
- BUT have ignored:
 - Charge sharing \rightarrow x2
 - Error correction on optical links (Hamming coding / 8b10b) \rightarrow x1.25
- Should also add a margin (let's say 20%) for e.g. data coding overheads
- 3.125 x 2 x 1.25 x 1.2 = <u>~12 Gbit/cm²/s</u>
- I'm not even convinced this is the maximum that is possible, but still worrying
- Even assuming progression in optical link technology, this is tough to implement
 - Power, cabling, etc.....

Correlator Architecture

