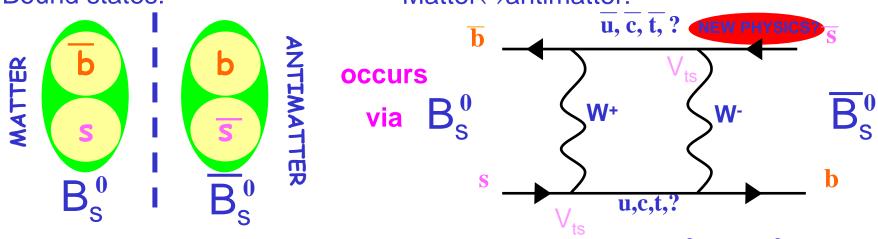


B_s Mixing at CDF

Sinéad M. Farrington University of Liverpool


For the CDF Collaboration

IOP HEPP 2006

B_s Physics

Bound states:

Matter⇔antimatter:

- Physical states, H and L, evolve as superpositions of B_s^0 and \overline{B}_s^0
- System characterised by 4 parameters:

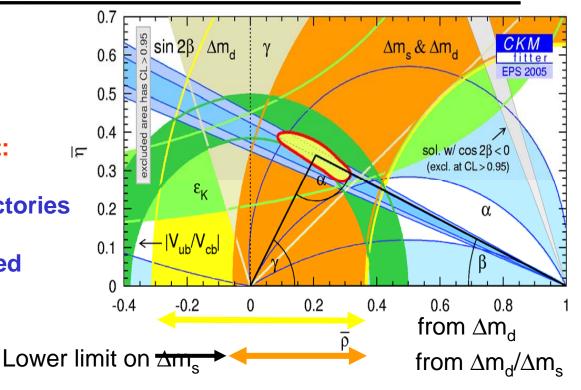
masses: m_H , m_L lifetimes: Γ_H , Γ_L (Γ =1/ τ)

Predicted ∆m_s around 20ps⁻¹

$$\Delta m_{s} = \frac{G_{F}^{2} m_{W}^{2} \eta S(m_{t}^{2} / m_{W}^{2})}{6\pi^{2}} m_{B_{s}} f_{B_{s}}^{2} B_{B_{s}} |V_{ts}^{*} V_{tb}|^{2}$$

- No measurements of Δm_s have been made:
 - B factories do not produce Bs Mesons
 - Limits set by LEP, SLD, Tevatron

Why is Δm_s interesting?


- 1) Probe of New Physics
 - may enter in box diagrams
- 2) Measure CKM matrix element:

∆m_d known accurately from B factories

 ξ (from lattice QCD) known to 2%

- V_{td} known to 15%
- Ratio V_{td}/V_{ts} ∞∆m_d/∆m_s related by constants:

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{\left| V_{ts} \right|^2}{\left| V_{td} \right|^2}$$

•CKM Fit result:

 Δm_s : 18.3+6.5 (1s) : +11.4 (2 σ) ps-1

So: measure ∆m_s gives V_{ts}

Standard Model Predicts rate of mixing, $\Delta m = m_H - m_L$, so Measure rate of mixing $\Rightarrow V_{ts}$ (or hints of NEW physics)

Measuring ∆m_s

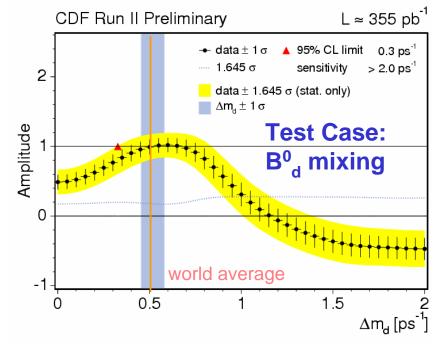
In principle: Measure asymmetry of number of matter and antimatter decays:

$$A(t) = \frac{N(B_s^0 \to B_s^0)(t) - N(B_s^0 \to \overline{B}_s^0)(t)}{N(B_s^0 \to B_s^0)(t) + N(B_s^0 \to \overline{B}_s^0)(t)} \propto \cos(\Delta mt)$$

In practice: use amplitude scan method

introduce amplitude to mixing probability

formula

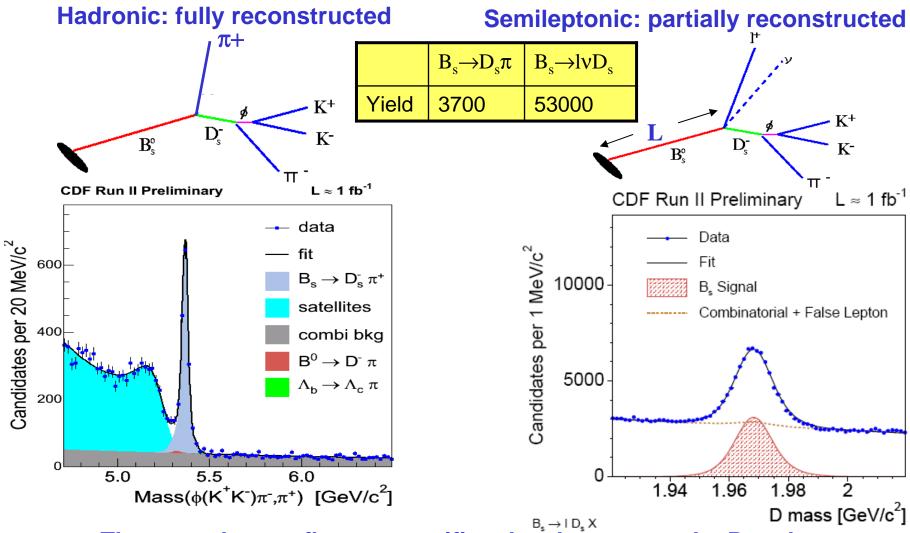

$$P_{unmix}^{B_s} = \frac{1}{2} \Gamma_{B_s} e^{-\Gamma_{B_s} t} \left(1 + A \cos \Delta m_s t \right)$$

$$P_{mix}^{B_s} = \frac{1}{2} \Gamma_{B_s} e^{-\Gamma_{B_s} t} \left(1 - A \cos \Delta m_s t \right)$$

- evaluate at each ∆m point
- Amplitude=1 if evaluated at correct ∆m
- Allows us to set confidence limit when

1.645 σ =1

H. G. Moser, A. Roussarie, NIM **A384** (1997)

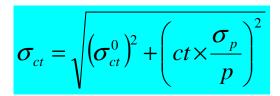

Mixing Ingredients

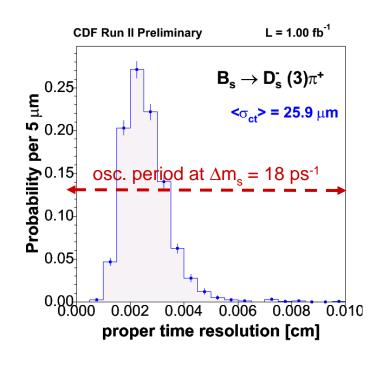
- 1) Signal samples
 - semileptonic and hadronic modes
- 2) Time of Decay
 - and knowledge of Proper decay time resolution

$$\sigma_{ct} = \sqrt{\left(\sigma_{ct}^{0}\right)^{2} + \left(ct \times \frac{\sigma_{p}}{p}\right)^{2}}$$

- 3) Flavour tagging
 - opposite side (can be calibrated on B⁰ and B⁺)
 - same side (cannot be calibrated on B⁰ and B⁺, used for the first time now)

1) Signal Samples for B_sMixing


These modes are flavour specific: the charges tag the B at decay


Crucial: Triggering using displaced track trigger (Silicon Vertex Trigger)

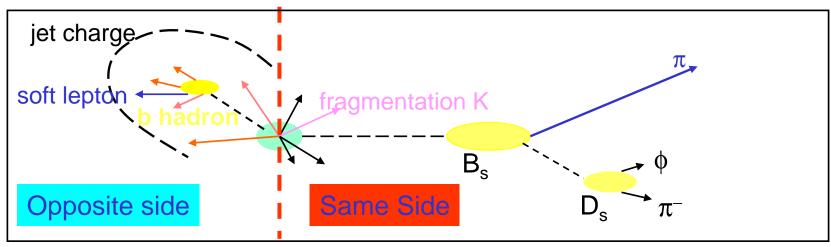
2) Time of Decay

- Reconstruct decay length by vertexing
- Measure p_T of decay products

$$ct = \frac{L}{\beta \gamma} = L \frac{m(B)}{p(B)} = \frac{L_{xy} m(B)}{p_T(lD)}$$

Hadronic:

$$\sigma_{ct}^{0} \approx 59 \mu m$$
 $\sigma_{p} / p \approx 15\%$


Semileptonic:

$$\sigma_{ct}^0 \approx 30 \mu m$$
 $\sigma_p / p \approx 0\%$

Crucial: Vertex resolution (Silicon Vertex Detector, in particular Layer00 very close to beampipe)

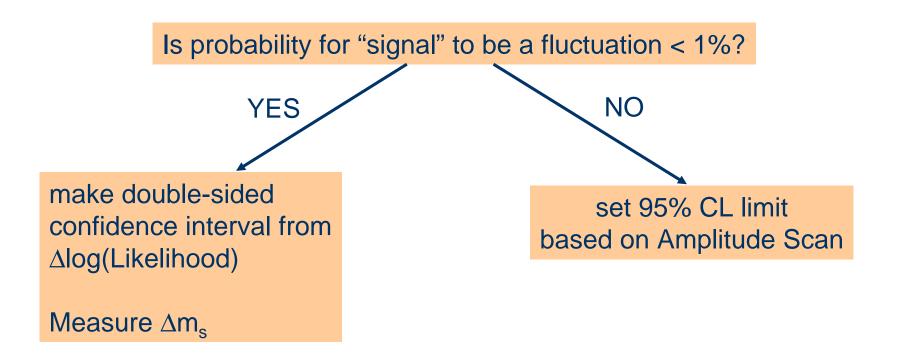
3) Flavour Tagging

To determine B flavour at production, use tagging techniques: b quarks produced in pairs ⇒ only need to determine flavour of one of them

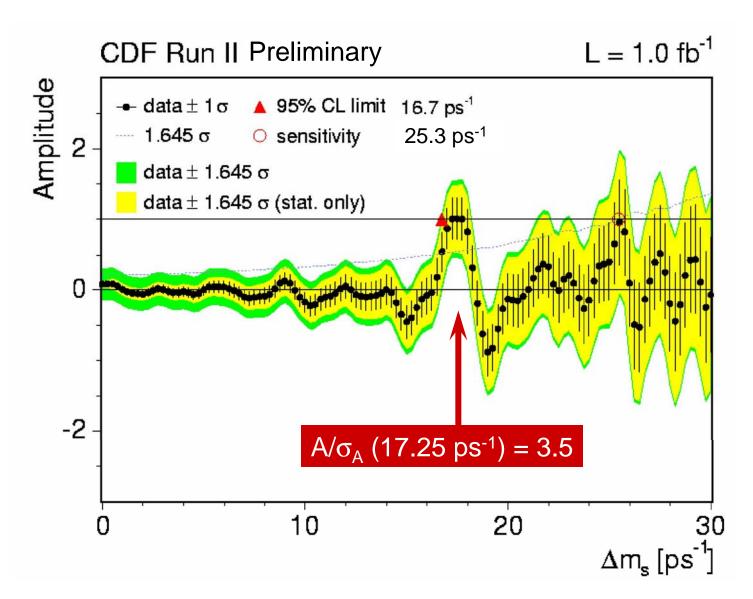

```
OPPOSITE SIDE
Soft Muon Tag
Soft Electron Tag
Jet charge tag
\varepsilon \mathbf{D}^2 = 1.44 \pm 0.04 \% \text{ (semileptonic)}
1.47 \pm 0.10 \% \text{ (hadronic)}
```

```
SAME SIDE Same Side K Tag \varepsilon D^2 = 4.00\pm0.04 \text{ %(semileptonic)} 3.42\pm0.06 \text{ % (hadronic)}
```

Putting Everything Together


- Amplitude scan performed on B_s candidates
- Inputs for each candidate:
 - Mass
 - Decay time
 - Decay time resolution
 - Tag decisions
 - Predicted dilution
 - Mass(lepton+D) if semileptonic
 - All elements are then folded into the amplitude scan

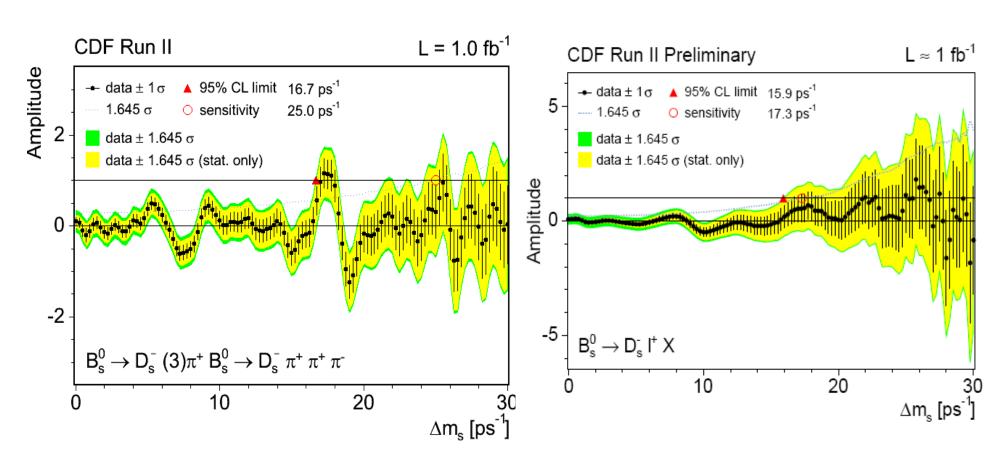
$$\frac{1}{\tau}e^{-t/\tau}(1\pm ADS_D\cos(\Delta mt))$$


A Priori Procedure

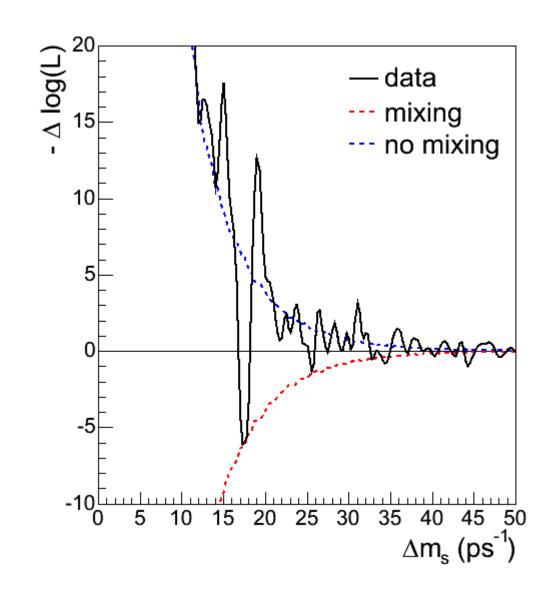
Decided upon before un-blinding the data: (everything blinded so far by scrambling tagger decision)

- Find highest significant point on amplitude scan consistent with an amplitude of 1
- significance to be estimated using ∆(In Likelihood) method
- effectively infinite Δm_s search window to be used

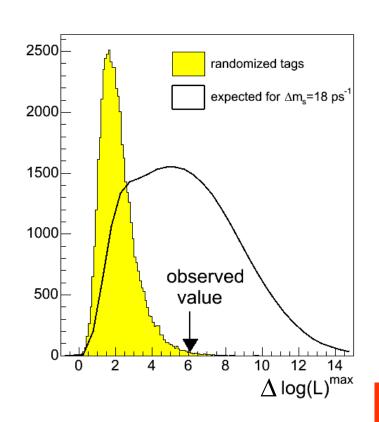
Combined Amplitude Scan

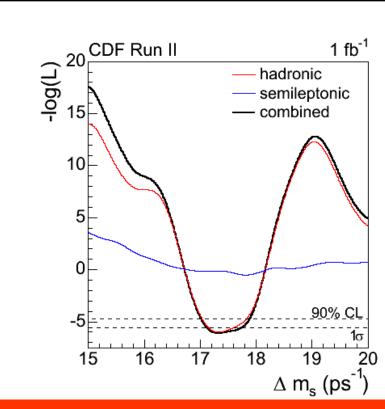


Q: How significant is this result?


Separate Samples

Semileptonic




Likelihood Ratio Profile

Q: How often can random tags produce a likelihood dip this deep?

Likelihood Significance

 $\Delta m_s = 17.33^{+0.42}_{-0.21} \text{ (stat)} \pm 0.07 \text{ (syst) ps}^{-1}$

 probability of fake from random tags = 0.5% measure ∆m_s!

already very precise! (at 2.5% level) Δm_s in [17.00, 17.91] ps⁻¹ at 90% CL Δm_s in [16.94, 17.97] ps⁻¹ at 95% CL

$|V_{ts}|/|V_{td}|$

Can extract V_{ts} value

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

• compare to Belle b->s γ (hep-ex/050679): $|V_{td}| / |V_{ts}| = 0.199 + 0.026 \text{ (stat)} + 0.018 \text{ (syst)}$

- inputs:
 - $m(B^0)/m(B_s) = 0.9832 (PDG 2006)$
 - $\xi = 1.21^{+0.40}_{-0.35}$ (Lattice 2005)
 - $\Delta m_d = 0.507 \pm 0.005 \text{ (PDG 2006)}$

Conclusions

- CDF has found a signature consistent with B_s B
 _s oscillations
- Probability of this being a fluctuation is 0.5%
- Presented first direct measurement of the B_s \overline{B}_s oscillation frequency:

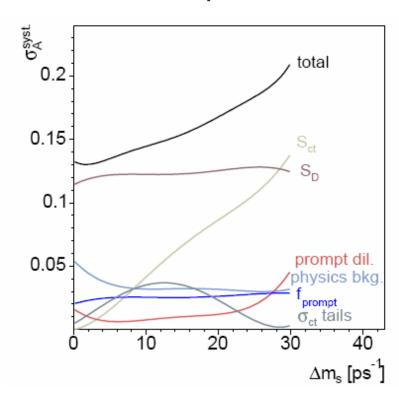
$$\Delta m_s = 17.33^{+0.42}_{-0.21} \text{ (stat)} \pm 0.07 \text{ (syst) ps}^{-1}$$

 $V_{ts} / V_{td} = 0.208 + 0.008 \text{ (stat + syst)}$

Systematic Uncertainties on Δm_s

- systematic uncertainties from fit model evaluated on toy Monte Carlo
- have negligible impact
- relevant systematic unc.
 from lifetime scale

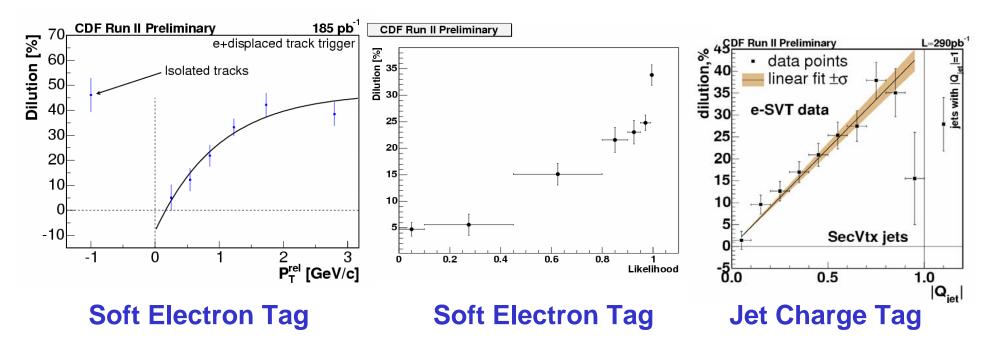
	Systematic Error
Fitting Model	< 0.01ps ⁻¹
SVX Alignment	0.04 ps ⁻¹
Track Fit Bias	0.05 ps ⁻¹
PV bias from tagging	0.02 ps ⁻¹
Total	0.07 ps ⁻¹


All relevant systematic uncertainties are common between hadronic and semileptonic samples

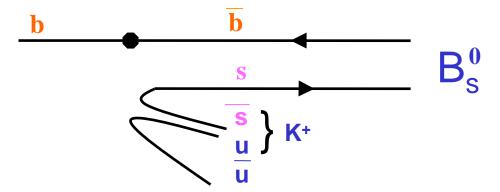
Systematic Uncertainties

Hadronic

0.45 Total 0.4Non-Gaus σ_{ct} Cabibbo D 0.35 ConSST OST+SST Corr 0.3-0.25 0.2 0.15- 0.1^{-2} 0.05^{-1} 15 10 $\Delta \text{ m}_{\text{s}} [\text{ps}^{-1}]$


Semileptonic

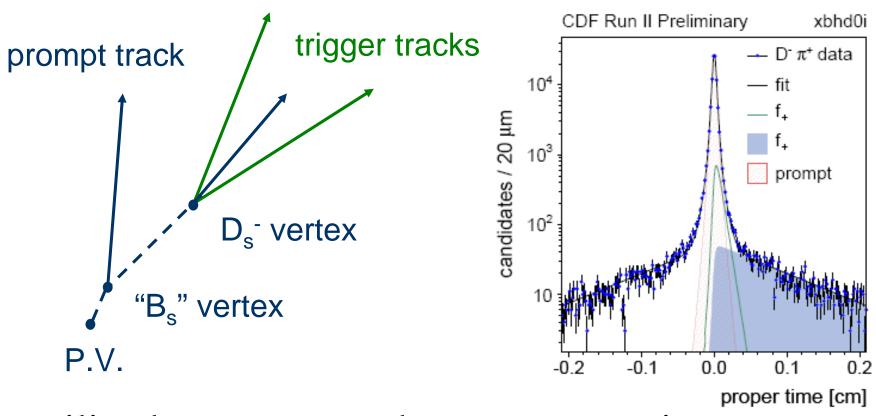
- related to absolute value of amplitude, relevant only when setting limits
 - cancel in A/σ_A , folded in to confidence calculation for observation
 - systematic uncertainties are very small compared to statistical


Opposite Side Taggers

- •Figure of merit is εD^2 ε = efficiency (% events tagger can be applied) D = dilution (% events tagger is correct)
- Performance studied in high statistics inclusive lepton+SVT trigger
 - Enables calibration of taggers
 - •Can also parameterise tagging dilution as function of variables:
 - •SLT: dilution parameterised as function of likelihood and ptrel
 - •JQT: dilution parameterised as function of jet charge for a given jet

Same Side (Kaon) Tagger

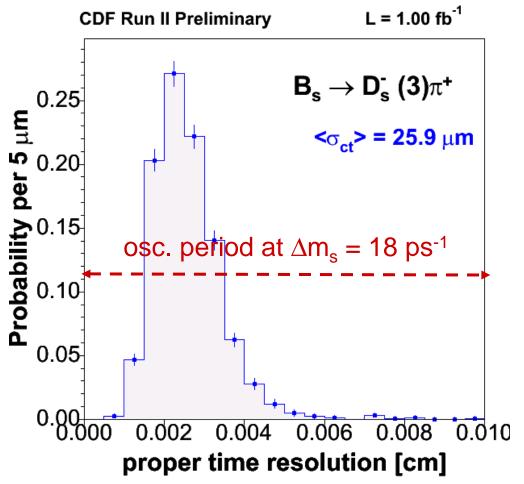
- Now being used for the first time
- Principle: charge of B and K correlated



- Use TOF, dE/dx to select track
- Tagger εD² not measurable in data until B_s mixing frequency known

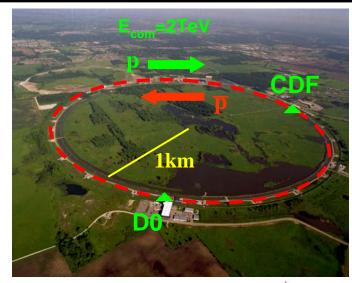
Very detailed study: (CDF Public note **)**

- If MC reproduces distributions well for B⁰,B⁺, then rely on it to extract tagger power in B_s (with appropriate systematic errors)
- High statistics B⁰ and B⁺ samples in which to make comparisons
- Systematics: production mechanism, fragmentation model, particle fraction around B, PID simulation, pile-up events


Calibrating the Proper Time Resolution

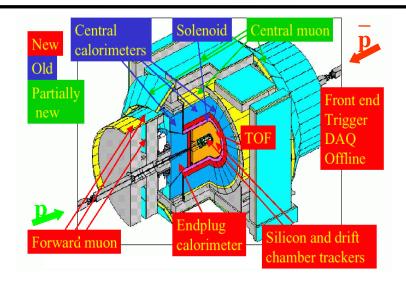
- utilize large prompt charm cross section
- construct "B_s-like" topologies of prompt D_s + prompt track

Proper Time Resolution


- utilize large prompt charm cross section
- construct "B_s-like" topologies of prompt D_s- + prompt track
- calibrate ct resolution by fitting for "lifetime" of "B_s-like" objects

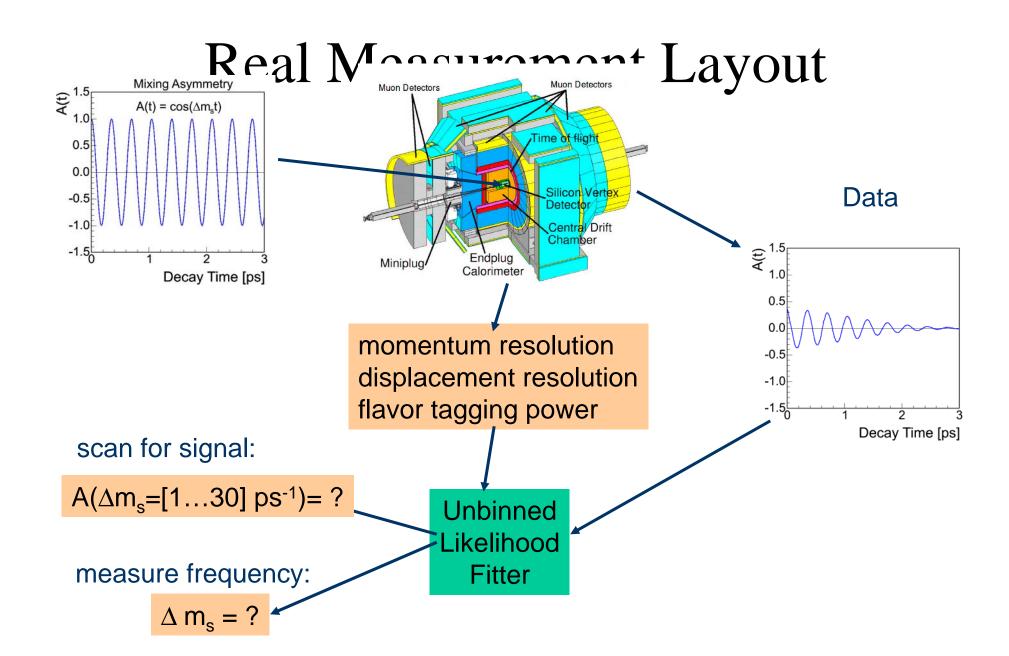
- event by event determination of primary vertex position used
- average uncertainty
 ~ 26 μm
- this intermetion is haddopped:

$$\sigma_{ct}^{0} \approx 59 \mu m$$
 $\sigma_{ct}^{0} \approx 30 \mu m$ $\sigma_{p}^{0} / p \approx 15\%$ $\sigma_{p}^{0} / p \approx 0\%$


The Tevatron and CDF

Fermilab, Chicago

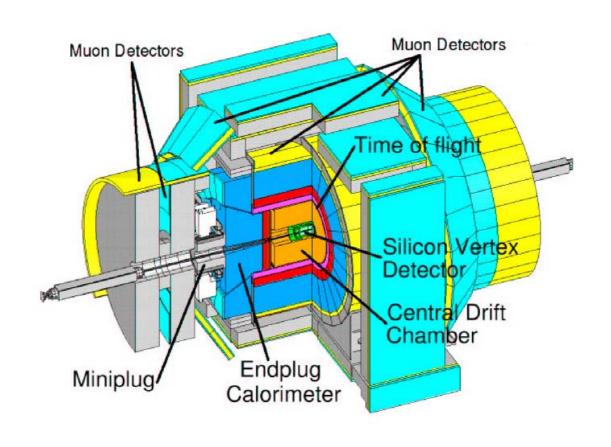
Currently the world's highest energy collider

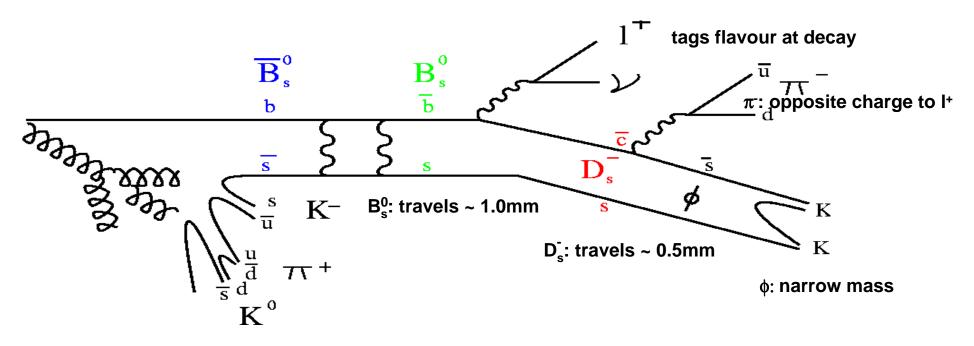

CDF Run I: 1992-1996 L= 0.1fb⁻¹

Major Upgrades 1996-2001

CDF Run II: 2001-2006 L= 1fb⁻¹

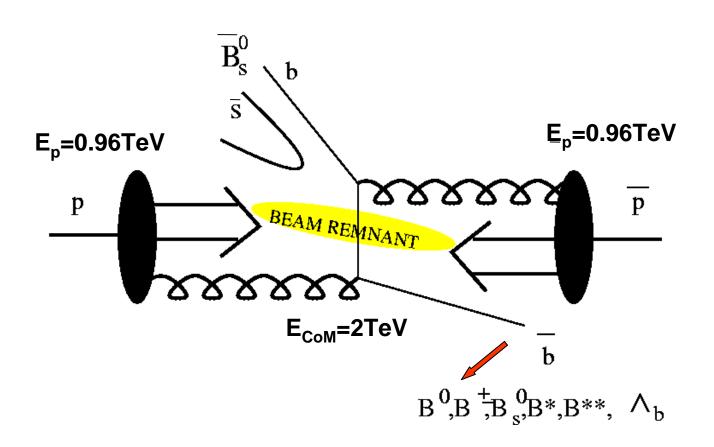
pp collisions can produce a wide spectrum of B hadrons in a challenging environment


B_s cannot be produced at the B factories since Centre of Mass energy is below threshold

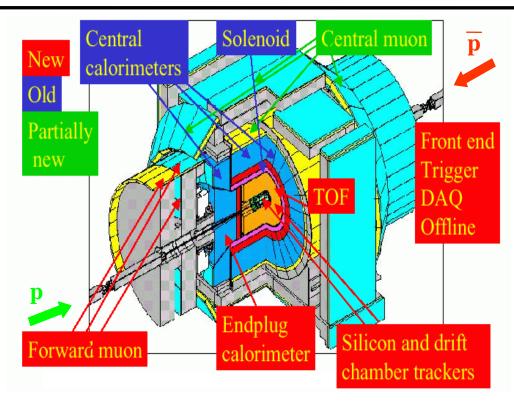

The CDFII Detector

CDF II Detector

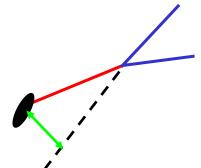
- multi-purpose detector
- excellent momentum resolution $\sigma(p)/p<0.1\%$
- Yield:
 - SVT based triggers
- Tagging power:

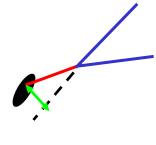


$B_s^0 - \overline{B}_s^0$ System



'neighbour' tags flavour at production


b Hadron Production at the Tevatron



The CDF Detector and Triggers

- $\sigma(b\overline{b}) << \sigma(p\overline{p}) \Rightarrow B$ events are selected with specialised triggers
- Displaced vertex trigger exploits long lifetime of B's
- Yields per pb⁻¹ are 3x Run I

Semileptonic Decay Fit Model

Unbinned maximum likelihood fit to $c\tau(B)$

 Background is parameterised by delta function and positive exp convoluted with Gaussian resolution:

$$F_{bkg} = \left[\left(1 - f_{+} \right) \delta \left(t - \Delta_{D} \right) + \frac{f_{+}}{\tau_{+}} \exp \left(\frac{\Delta_{E} - t}{\tau_{+}} \right) \right] \otimes G(t, \sigma_{G})$$

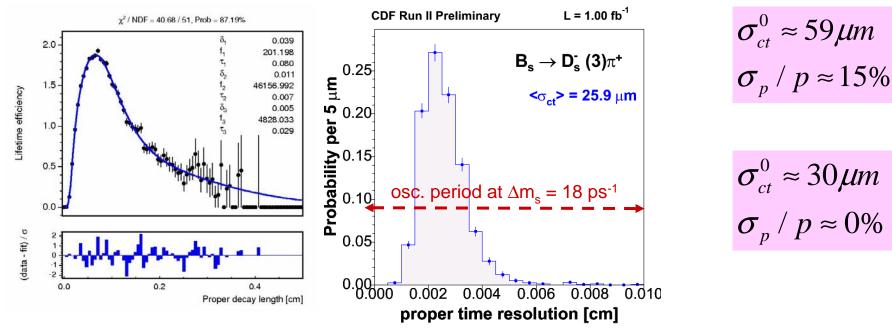
Free parameters: Δ_D Δ_E λ_+ f_+ σ_G

- Signal: exp convoluted with Gaussian resolution, K factor distribution, P(K), and bias function, ϵ

$$F_{sig} = N \frac{K}{c \tau} \exp \left(\frac{-Kt}{\tau} \right) \mathcal{E}(Kt) \otimes G(t, s\sigma_i) \otimes P(K)$$

Maximum likelihood function:

$$L = \prod_{i}^{N_{sig}} \left[(1 - f_{bkg}) F_{sig}^{i} + f_{bkg} F_{bkg}^{i} \right] \cdot \prod_{j}^{N_{bkg}} F_{bkg}^{j}$$


2) Time of Decay

- Reconstruct decay length by vertexing
- Measure p_T of decay products

$$ct = \frac{L}{\beta \gamma} = L \frac{m(B)}{p(B)} = \frac{L_{xy} m(B)}{p_T(lD)} K$$

$$\sigma_{ct} = \sqrt{\left(\sigma_{ct}^{0}\right)^{2} + \left(ct \times \frac{\sigma_{p}}{p}\right)^{2}}$$

•Displaced Track Trigger imposes bias ⇒ correct with efficiency function

Crucial: Vertex resolution (Silicon Vertex Detector, in particular Layer00 very close to beampipe)

Want to understand: - Average lifetime, Γ

$$=\frac{\Gamma_H + \Gamma_L}{2}$$

- Lifetime difference, $\Delta\Gamma = \Gamma_H \Gamma_L$
- Rate of mixing, ∆m

$$= m_H - m_L$$

Current Status:

$$\Delta\Gamma/\Gamma$$
 (%) < 0.29

$$\Delta m (ps^{-1}) > 14.1$$