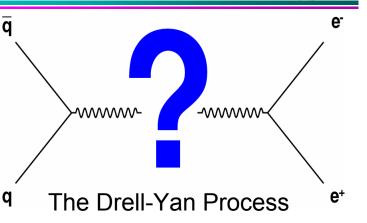


IoP HEPP Group Conference 2006


Sam Harper

University of Oxford

- Analysis Goal:
 - to search for new physics
 beyond the Standard Model
- Achieve this by:

- measuring the Drell-Yan mass spectrum from $p p \rightarrow e^+ e^-$ events at $\sqrt{s} = 1.96 \,\text{TeV}$
- interpreting the measured mass spectrum to search for and place limits on new physics processes in the 150 - 950 GeV/c² range
- data sample: $2002-2005 \rightarrow 820 \text{pb}^{-1}$

 \rightarrow double the data of previous searches!

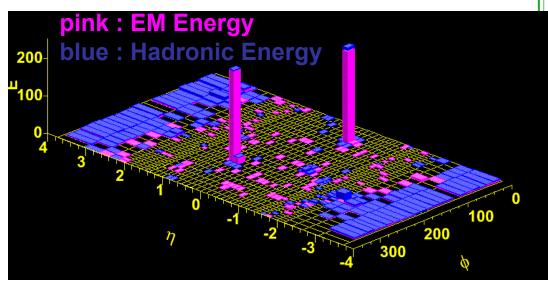
- Di-Electron channel relatively clean, low backgrounds
 - ideal channel to search for the small signals of a new physics process
- Di-Electron channel is sensitive to a wealth of new physics processes
 - Extra-dimensional gravity models, GUT theories, SUSY, Technicolor and yes even string theory
- New mass regime, produce e⁺e⁻ pairs well above LEP II range

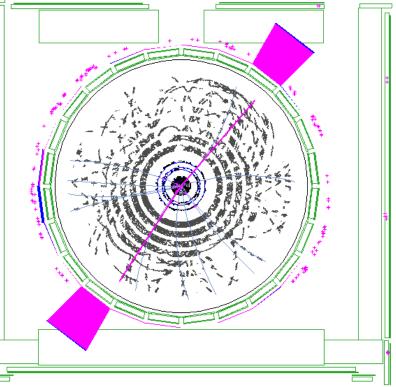
The CDF Detector

- situated at the Tevatron, observing $p\overline{p}$ collisions at $\sqrt{s=1.96TeV}$
- principally use the central outer tracker – and EM calorimeters -
- calorimeter resolution:
 - $\sim \Delta M_{ee}/M_{ee} \approx 3\%$
- CDF, together with D0, observes the highest energy collisions in the world, currently offers the best place to search for new physics

The CDF II Detector

IoP Meeting 11/04/06


- data sample: 820pb⁻¹
- require two isolated electrons ($E_T > 25 \text{ GeV}$)
- two detector regions:
 - |η|<1.1 (central), 1.2<|η|<3.0 (plug)
 - require either central-central or central-plug
- blind analysis:
 - cuts were tuned on Monte Carlo and background samples before high mass region (>150 GeV) was looked at
 - only blind to data not previously published
- cuts were chosen to have high efficiency (>~90%) and good background rejection


A Good Electron Signature

- isolated EM calorimeter cluster with little hadronic energy
- associated track has $p_{\rm T}$ similar to cluster $E_{\rm T}$
- profile of energy deposit consistent with test beam data

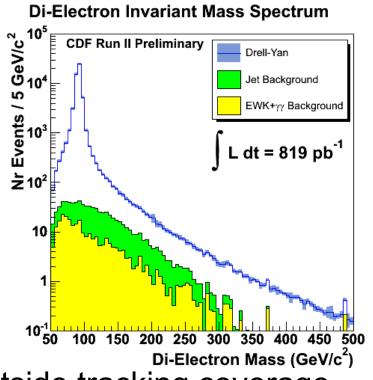
2D lego plot of energy deposits in the calorimeters towers

Face on view of the Central Outer Tracker

Highest mass di-electron event (M_{ee} = 491 GeV/c²)

IoP Meeting 11/04/06

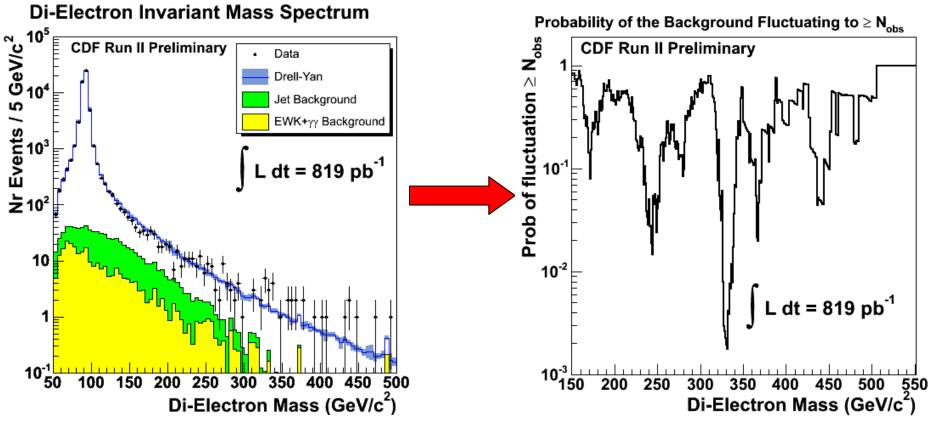
Sam Harper



In order of significance:

- SM Drell-Yan (γ*/Z→e⁺e⁻):
 irreducible background
- Jet background:
 - jets faking electrons
 - very small fraction pass cuts
- Di-Photon:

- photon converted or incident outside tracking coverage
- EWK background (tt, $\tau^+\tau^-$, WW, WZ) :
 - genuine electrons produced through W decay


- Search strategy:
 - Scan across the entire mass spectrum from 150GeV to 950GeV
 - At each point calculate P(bkg≥data) in a window equal to the width of a narrow* resonance in the CDF detector
 - Include systematics by smearing probability with a Gaussian
 - μ = bkg expectation
 - σ = error on bkg expectation
- model independent
 - only assumes a narrow resonance
- method and parameters chosen before looking at the data
 - statistically unbiased

*narrow = resolution of detector dominates width

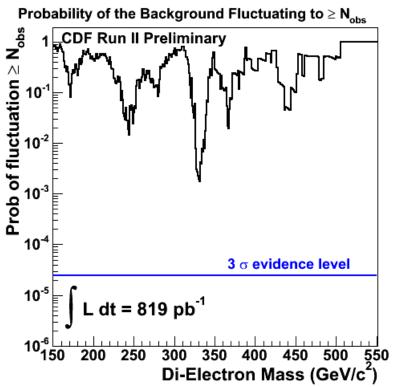
Results

- Large possible excess at 330GeV!?
- Prob of bkg fluctuating to data level at 330: <0.2%
- Do we have evidence for new physics at 330?

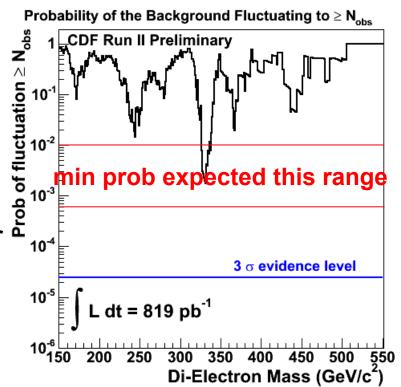
IoP Meeting 11/04/06

Sam Harper

Evidence for New physics?



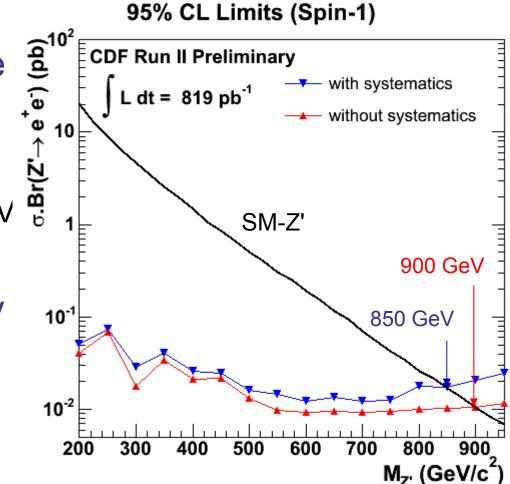
- searching over a large range
 - 100s of points, correlated in a complicated way
 - throw pseudo-experiments
 based on background to
 determine how often a particular
 probability or less will occur
 - find that a 0.2% probability will occur somewhere ~19% of the time
 - not only is a prob<1% likely to occur but its unlikely not to occur


minimum probability:

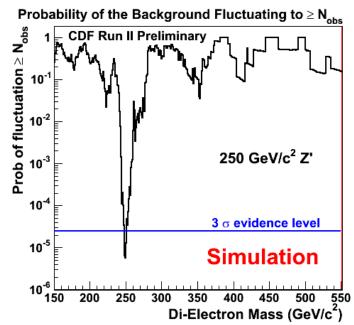
- expected : 0.3%
- 68.3% range: 0.06%→1.0%

- searching over a large range
 - 100s of points, correlated in a complicated way
 - throw pseudo-experiments
 based on background to
 determine how often a particular
 probability or less will occur
 - find that a 0.2% probability will occur somewhere ~19% of the time
 - not only is a prob<1% likely to occur but its unlikely not to occur

minimum probability:


- expected : 0.3%
- 68.3% range: 0.06%→1.0%

- highest direct mass spectrum only limit in the world
- previous results
 - 200pb⁻¹ (ee+µµ) : 820 GeV
 - D0 (200pb⁻¹) : 780 GeV
- can improve by ~25% by adding in angular info
- more models and spins coming soon



- search statistics limited
 - improve with 4-8fb⁻¹ expected in run II
- improve sensitivity by
 - adding in angular information
 - combining with di-photon analysis
- maybe just maybe one of the excesses will cross the 3 sigma line next year....

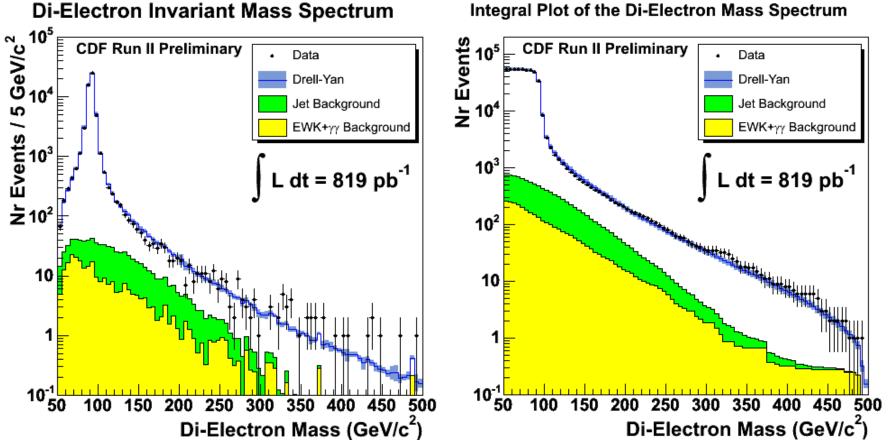
maybe for real next year?

Selection Cuts

Variable	CEM	PEM
Fiducial	Fid = 1 or 2	1.2< η _{PES2D} <3.0
Ε _τ	> 25 GeV	> 25 GeV
Track Z ₀	≤ 60 cm	n/a
P _T	> 15 GeV	n/a
E _{had} /E _{em}	≤ 0.055 + 0.00045 x E	≤ 0.05 + 0.026xIn(E/100)
Isol E _T	≤ 3 + 0.02xE _T GeV	≤ 1.6 + 0.02xE _T GeV
E/P	≤ 2.5 + 0.015xE _T E _T <100 P _T >25 GeV E _T >100	n/a
CES AX	≤ 3 cm	n/a
	≤ 5 cm	n/a
L _{shr}	≤ 0.2	n/a
χ^2 Pem3x3	n/a	<25
conversion	!=1 (CP events only)	n/a

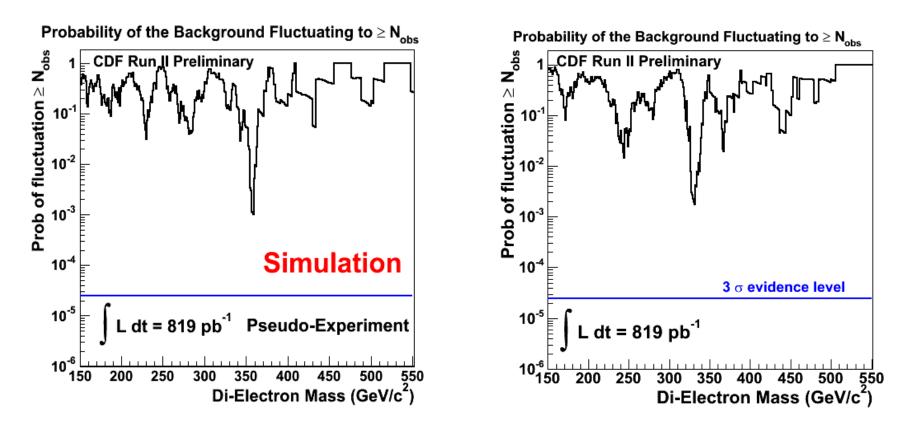
Quantity	Uncertainty	Channels Effected
Luminosity	6%	CC + CP
Nr QCD Background (CC)	85.8%	CC
Nr QCD Background (CP)	32.0%	CP
EWK Cross-Section	10.8%	CC + CP
Z^0/γ^* MC Normalisation (CC)	3.8%	CC + CP
Energy Scale (CEM)	1.0%	CC + CP
Energy Scale (PEM)	1.0%	CP
Energy Resolution (CEM)	0.7%	CC + CP
Energy Resolution (PEM)	0.5%	CP
Photon Conversion	10%	CC + CP
Efficiency Scale Factor (CEM)	0.3%	CC + CP
Efficiency Scale Factor (PEM)	0.4%	CP
High Mass Efficiency (CEM)	2.0%	CC + CP
High Mass Efficiency (PEM)	2.0%	CP

PDF errors not shown as cannot be expressed easily as a single number


IoP Meeting 11/04/06

Sam Harper

Mass Spectrum



Integral Plot of the Di-Electron Mass Spectrum

Typical Pseudo Experiment



