

 $\tau^{\pm} \longrightarrow \pi^{\pm} \pi^{+} \pi^{-} \pi^{0} \nu_{\tau}$

decays at BaBar

Tim West, Jong Yi, Roger Barlow

The University of Manchester

Carsten Hast, SLAC

IOP HEP meeting Warwick, 12th April '06

The Universit of Manchest

Outline

Motivation and aims:

- Branching fractions of interest
- G-parity violation
- Analysis plan and method:
 - Tau reconstruction
 - Cuts and optimisation
- Monte-Carlo mass plots
- Current status and future plans.

The Univers of Manchest

Study Motivation and Aims

- Measure the branching fraction for the decay $\tau \rightarrow \pi^{-}\pi^{+}\pi^{-}\pi^{0}\nu_{\tau}$
- Obtain inclusive branching fraction measurements for decays involving ω, η and ρ (and any other) resonances.
- Look for second class currents:
 - Such decays which do not conserve G-parity: $G = C(-1)^{T}$
 - Second class current suppression factor w.r.t. first class currents is proportional to $|m_u m_d|/(m_u + m_d)$ (Berger and Lipkin 1987).
 - The decays of particular interest for this are:

 $\tau \to b_1(1235)v_\tau \to \omega \pi v_\tau \to \pi \pi^+ \pi^- \pi^0 v_\tau$

 $\tau \to a_0(980)v_{\tau} \to \eta \pi v_{\tau} \to \pi^- \pi^+ \pi^- \pi^0 v_{\tau}$

- The decay $\tau \rightarrow \omega \pi \nu_{\tau}$ is allowed as a first class (p-wave) current, which makes finding the second class (s/d-wave) current harder.
- The decay $\tau \rightarrow \eta \pi \nu_{\tau}$ is unambiguously second class, into either a s or p-wave state.

I he Univers of Manchesi

Study Motivation and Aims

- Plan to use the same framework to look at decays with one or more charged pions replaced with charged kaons.
- Current BF values are
 - $\tau^- \to \pi^- \pi^+ \pi^- \pi^0 v_{\tau}$ (4.37±0.09) %
 - $\tau \to \pi^- \pi^+ \pi^- \pi^0 v_{\tau}$ (ex. K⁰) (4.25±0.09) %
 - $\tau^- \to \pi^- \pi^+ \pi^- \pi^0 v_{\tau}$ (ex. K⁰, ω) (2.51±0.09) %
- Previous claim of detection of $\tau \rightarrow \eta \pi \nu_{\tau}$ by HRS was later refuted by CLEO; current upper limit is <0.014%; theory expects them to be in the range 0.5% 10⁻⁴.

The Universi of Manchest

Plan

- Event selection and tau reconstruction is split over a number of stages:
 - For initial event selection we use a standard BaBar 'skim' of the dataset; this skim consists of events containing charged tracks with a 1-on-N topology (using the event thrust to define the two hemispheres) along with a number of requirements on event quality.
 - Run over the skim selecting events with a 1-3 topology of the charged tracks with at least one π^0 in the 3-prong hemisphere, reconstructing all possible $h^-h^+h^-\pi^0$ combinations for each event into τ candidates.
 - Then impose further restrictions based on particle identification and number and quality of π^0 s.

The Universit of Manchest

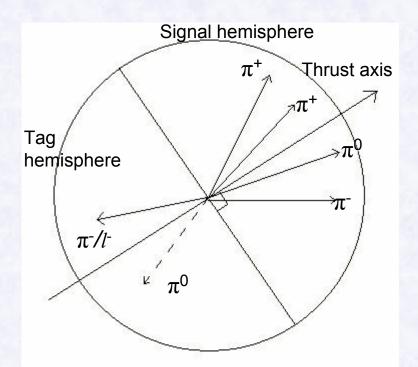
Plan

- Optimise cuts on a number of quantities to obtain a cleaner event sample.
- After applying cuts, measure inclusive branching fraction for the decay $\tau^- \rightarrow \pi^- \pi^- \pi^0 v_{\tau}$.
- Look for resonances and measure their:
 - branching fractions,
 - masses,
 - widths,
 - angular distributions.

Tau Reconstruction

All possible τ candidates in the event are reconstructed.

- Requirements on charged tracks are:
 - p<10 GeV
 - p₇>0.1 GeV
 - At least 12 drift chamber hits
 - Closest approach to IP is within 1.5cm in the *x-y* plane and 10cm in the *z* plane.
- Requirements on the π^0 are:
 - Lateral moment between 0.001 and 0.5
 - $E_{\gamma} > 50 \text{ MeV}$
 - $E_{\pi 0} > 200 \text{ MeV}$
 - Each photon deposits energy in at least two crystals.
 - Split off energy cut 110 MeV, distance 25 cm.
 - $-\chi^2$ < 5.0 for vertexing the photons.
 - No merged π^0 .



The Univers of Manchest

Tau Reconstruction

We then select candidates where:

- All four daughter particles lie in the same hemisphere,
- The charged daughters are not tagged as leptons, kaons or protons.
- There is only one π^0 in the signal hemisphere.
- No π^0 in the tag hemisphere for lepton tags, one for ρ tags.
- For ρ tags require the ρ candidate mass to be between 0.67 GeV and 0.87 GeV.

The Universit of Manchest

Optimisation and cuts

- Optimise cuts to maximise the value of $S^2/(S+B)$.
- Have optimised for lepton tags and ρ tags separately and combined; plan to optimise with leptons separated into e and μ tags.
- Variables that are optimised on:
 - Total event energy (E_{total})
 - Thrust magnitude
 - Angle between thrust axis and beam axis (θ_{thrust})
 - Dipion mass under electron mass hypothesis.
 - Unassociated energy; this is all clusters:
 - Not associated with a charged track or π^0 ,
 - At least 50 MeV and 3 crystals,
 - Lateral moment less than 0.6,
 - At least 25 cm from nearest track,
 - **0.32<θ<2.44**.

The Univers of Manchest

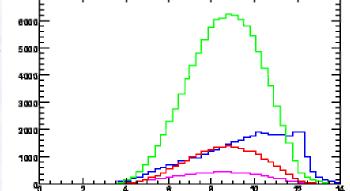
Optimisation and cuts

After applying cuts the majority of background is from other τ decays, with roughly equal contributions from:

- $\tau^- \rightarrow \pi^- \pi^+ \pi^- \pi^0 \pi^0 v_{\tau}$
- $\tau^{-} \rightarrow \pi^{-} \pi^{+} \pi^{-} \nu_{\tau}$
- Cuts may need some adjustment when data is looked at due to unmodeled backgrounds.

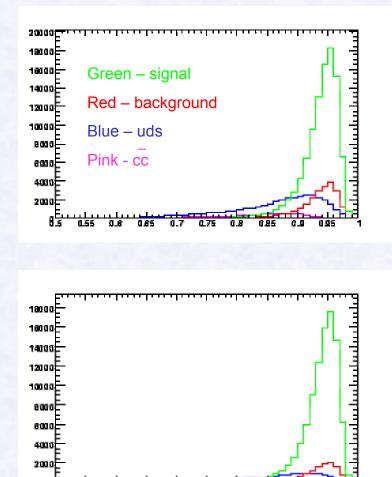
Тад	lepton	ρ	Combined
E _{total} /GeV	<11.75	<11.8	<11.6
Thrust	>0.8425	>0.88	>0.8725
$\cos heta_{thrust}$	<0.95	<0.935	<0.995
m _{ee} ²/GeV²c-4	>0	>0	>0
Unassociated energy/GeV	<0.25	<0.25	<0.25

 Following plots are for lepton tag only and are scaled to 99.7fb⁻¹ of on peak (centre of mass energy=10.58GeV) data.



Optimisation and cuts

Event energy


Before cuts

The Universit of Mancheste

83

0.55

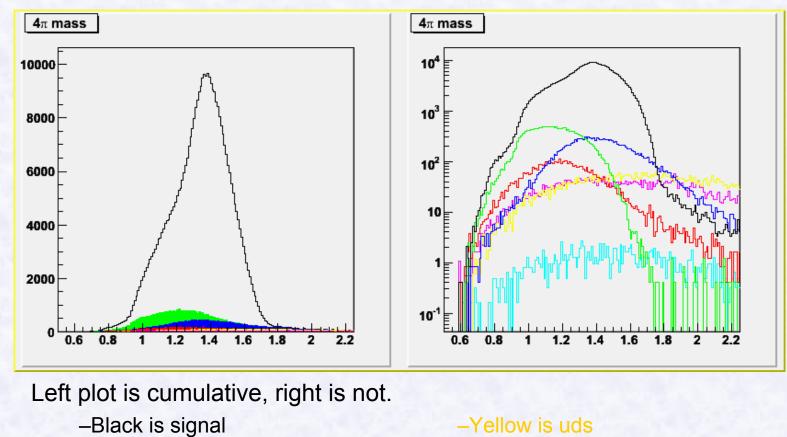
8.8

0.85

0.7

0.75

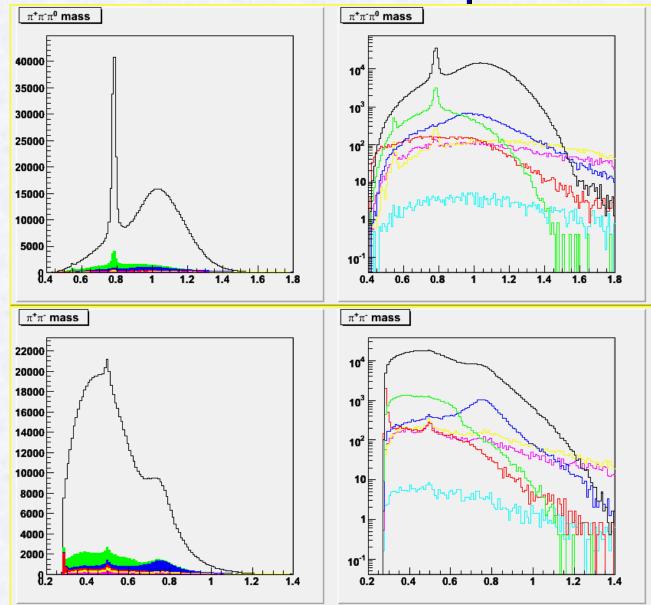
8.0


0.85

8.8

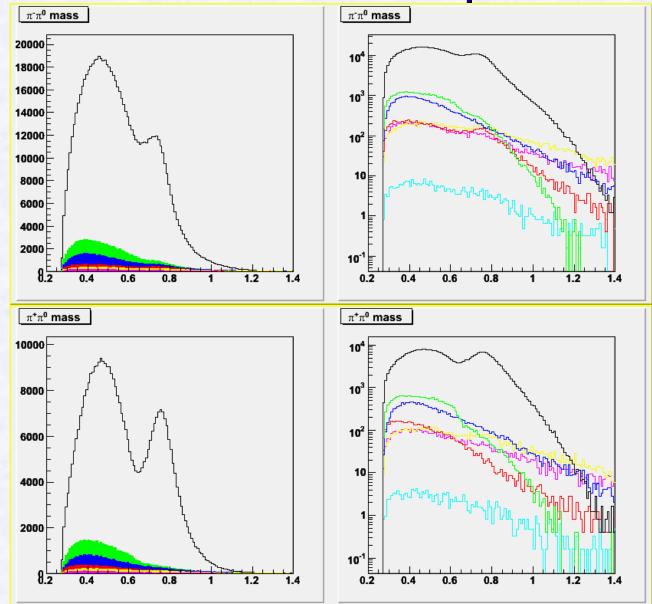
0.95

Monte-Carlo Mass spectra



- -Green is $\tau^- \rightarrow \pi^- \pi^- \pi^0 \pi^0 \nu_{\tau}$
- -Dark blue is $\tau \rightarrow \pi^- \pi^+ \pi^- v_{\tau}$
- –Red is other τ background

- -Pink is ccbar
- -Light blue is BBbar



Monte-Carlo Mass spectra

The University of Mancheste

- Optimisation done, just need to do a couple of small tweaks before looking at data.
- Aiming to send branching fraction measurements/limits to Tau '06 (September).
- Then plan to submit for publication.
- Intend to look at modes with charged kaons replacing pions.