

Maximum Likelihood Analysis of $B^+ \rightarrow \rho^+ \rho^0$ at the BaBar Detector

Katharine Schofield

THE UNIVERSITY of LIVERPOOL

Overview

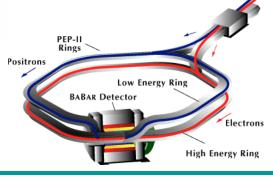
- The BaBar Experiment
- Motivation for analysis
 Theoretical Overview
- Analysis Method
- Results
- Systematics
- Conclusion

The BaBar Detector

Silicon Vertex Tracker (SVT) *Tracking & dE/dx*

Drift Chamber (DCH) *Tracking & dE/dx*

Detector of Internally Reflected Cerenkov Light (DIRC) *K/π Separation*

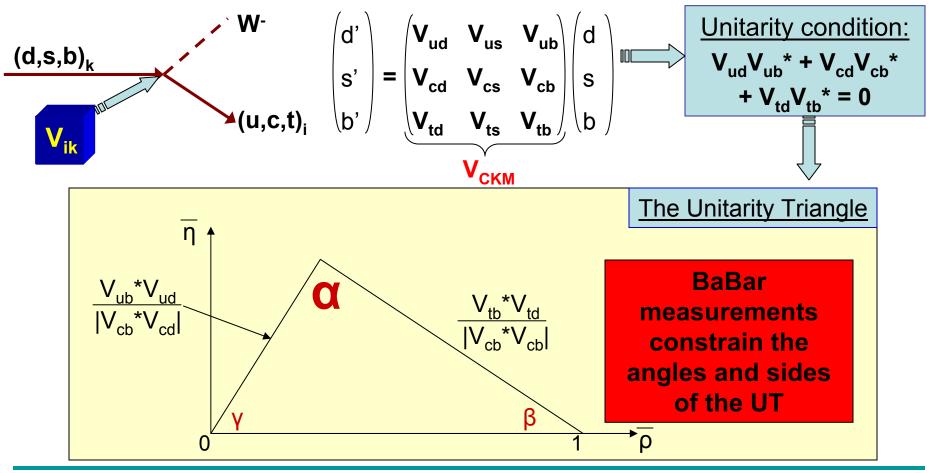

(9)GeV)

Electromagnetic Calorimeter (EMC) π^0/γ reconstruction, $e^{+/-}$ ID

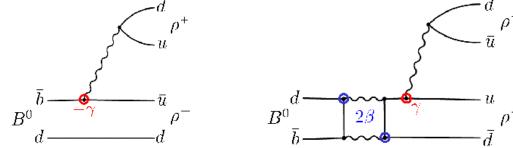
1.5T Solenoid Magnet

Instrumented Flux Return (IFR) $\mu^{+/-}$, $K_L ID$

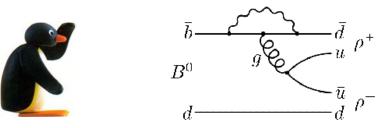
- Centre of Mass Energy 10.58 GeV
- Boost βγ = 0.56
- >360 million BB pairs



(3.1 GeV)

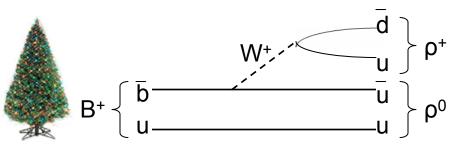

Motivation and brief overview of theory

- Fermions of different flavours can communicate via flavour changing weak interactions
- Modeled by 3×3 CKM matrix 3 mixing angles, 1 phase

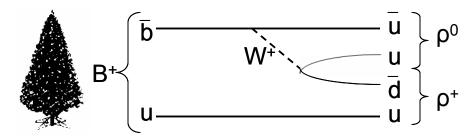


Motivations

- $B \rightarrow \rho^+ \rho^-$ decays involve transitions of the type b \rightarrow uud
 - Access to CKM angle α (=180 β γ) from dominant tree diagrams



- BUT gluonic penguin amplitudes also interfere \rightarrow actually we measure $2\alpha_{eff}$
- Define $\kappa = 2(\alpha_{eff}-\alpha)$ difference due to penguin loops



- However, we can disentangle these penguin contributions – <u>hence measure α </u> – using the other B $\rightarrow \rho\rho$ modes via an *Isospin Analysis...* $B^+ \rightarrow \rho^+ \rho^0$

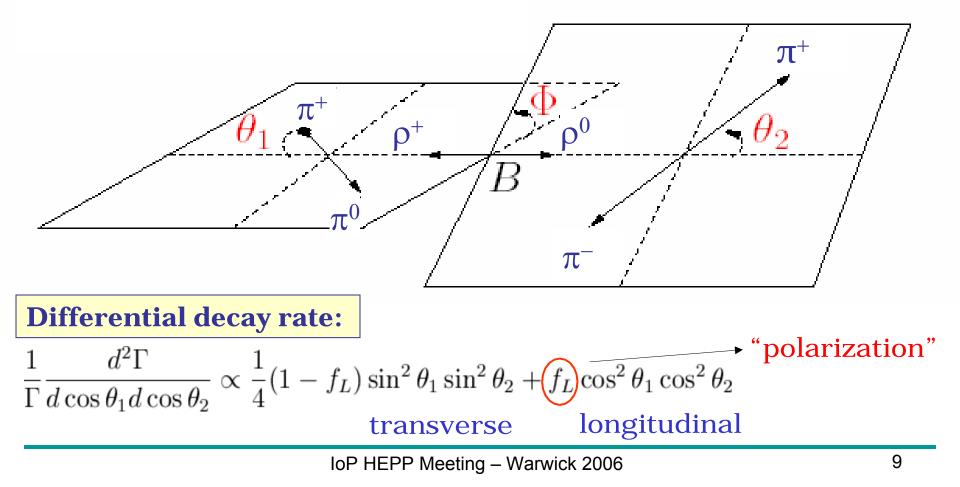
• Leading diagrams for $B^+ \rightarrow \rho^+ \rho^0$ – Tree diagrams dominate:

Colour allowed tree diagram

Colour suppressed tree diagram

- No gluonic penguins in $B^+ \rightarrow \rho^+ \rho^0$
- B⁰→p⁰p⁰ is gluonic penguin only and constrained to be small
- By using all three ($\rho^+\rho^-$, $\rho^+\rho^0$ and $\rho^0\rho^0$), we can measure the penguin contribution κ

- Isospin Analysis disentangles penguin contributions to using SU(2) symmetry relations between the B→pp modes
- Need 5 rates:

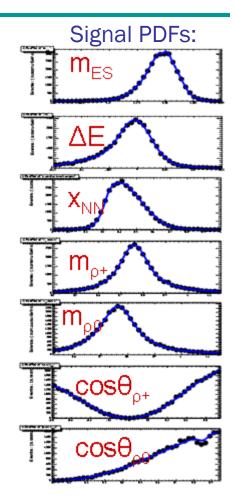

- $B(B^{\pm} \rightarrow \rho^{\pm} \rho^{0})$, $B(B^{0} \rightarrow \rho^{+} \rho^{-})$, $B(\overline{B^{0}} \rightarrow \rho^{+} \rho^{-})$, $B(B^{0} \rightarrow \rho^{0} \rho^{0})$, $B(\overline{B^{0}} \rightarrow \rho^{0} \rho^{0})$

Construct triangles representing the complex amplitudes

$$A^{+-} = A(B^{0} \to \rho^{+}\rho^{-}), \bar{A}^{+-} = A(\bar{B}^{0} \to \rho^{+}\rho^{-}), A^{+0} = A(B^{+} \to \rho^{+}\rho^{0}) = \bar{A}^{-0} = A(B^{-} \to \rho^{-}\rho^{0}), A^{00} = A(B^{0} \to \rho^{0}\rho^{0}), \bar{A}^{00} = A(\bar{B}^{0} \to \rho^{0}\rho^{0}).$$

- The final state contains 2 vector mesons
 - Both Longitudinal and Transverse components
- Perform analysis as function of 2 helicity angles $\theta_{\rho+}$ (= θ_1) and $\theta_{\rho0}$ (= θ_2)

– Integrate over angle ϕ between the decay planes



- 210.5 fb⁻¹ (231.8*10⁶ BB pairs) taken on the Y(4S) resonance
- 21.6 fb⁻¹ taken 40MeV below Y(4S) resonance for studying backgrounds
 - In this data sample we expect:
 - ~400 Signal events ($\epsilon_{long} = 8.4\%$, $\epsilon_{tran} = 18.6\%$)
 - ~65000 Continuum (qq) events (ε =0.03%)
 - ~9000 B-background events
- We measure:
 - Fraction of longitudinally polarized events f_L
 - Branching Fraction *B*,
 - Charge Asymmetry A_{CP}

$$A_{CP} = \frac{N(B^+ \rightarrow \rho^+ \rho^0) - N(B^- \rightarrow \rho^- \rho^0)}{N(B^+ \rightarrow \rho^+ \rho^0) + N(B^- \rightarrow \rho^- \rho^0)}$$

Event Selection

- Discriminating Variables:
- Kinematic selection:
 - $m_{ES} = (E_{beam}^2 p_B^2)^{1/2}$ Beam energy constrained B mass
 - $\Delta E = E_B E_{CM}/2$ Difference between reconstructed B energy and known value
- Background Rejection:
 - Neural Net Discriminate signal and backgrounds using event shape variables
- Properties of ρ mesons:
 - m_{p+}, m_{p0} Masses
 - $\cos\theta_{\rho+}$, $|\cos\theta_{\rho0}|$ Helicity angles
- Challenges:
 - Reconstructing π⁰s
 - Reconstructing soft π's
 - Backgrounds from B decays
 - ρ resonance is broad (width = 150MeV)

Extended Unbinned Maximum Likelihood Fit

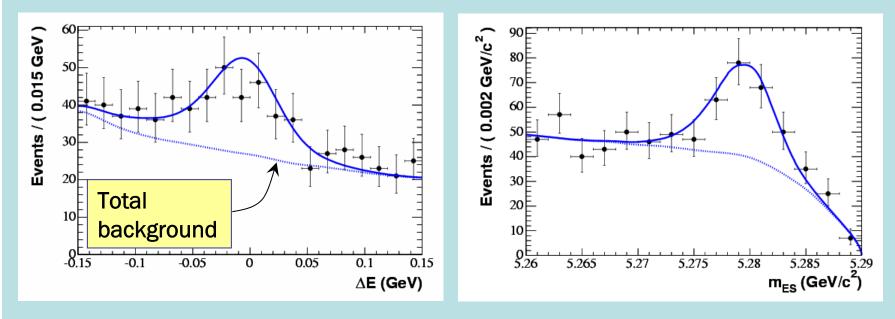
• Build ML fit with 7 variables: m_{ES} , ΔE , x_{NN} , $m_{\rho+}$, $m_{\rho0}$, $\cos\theta_{\rho+}$, $|\cos\theta_{\rho0}|$

Likelihood
Function:

$$\mathcal{L} = e^{-N'} \prod_{i=1}^{N} \left(N_S P_{S,i}(f_L) + N_C P_{C,i} + \sum_{\text{bdf B } j} N_j P_{j,i} \right)$$
Signal Continuum B-Backgrounds&SxF

- $N_{\rm S},\,N_{\rm C},\,N_{\rm J}$ are the numbers of events in each category; $P_{\rm S,i},\,P_{\rm C,i},\,P_{\rm j,i}$ are the PDFs

Components modelled in the likelihood function:


- Correctly reconstructed Signal (longitudinal and transverse)
- Continuum background from qq
- B-Background modes (16 in total)
- Mis-reconstructed signal

Fit Results

Fit results:

- $N_{signal} = 358 \pm 48$
- Polarization, $f_L = 0.95 \pm 0.04$
- Charge Asymmetry, $A_{CP} = 0.10 \pm 0.14$

Projection of signal-enriched sample:

Systematics

• Corrections and systematics on the signal yield and polarisation fraction:

	N _{Sig} (events)		f _L (%)	
Source	Size	Syst. Err	Size S	Syst Err
Amount of mis-reconstructed signal	-	29	-	0.7
Model of signal and B-backgrounds	-47	23.5	+1.4	0.7
B backgrounds yields	-	11	-	0.6
NN/helicity correlation in qq	+22	11	+0.1	0.05
Additional B backgrounds	-	8	-	0.5
Statistical uncertainty on signal PDF shapes	-	15	-	1.5
Uncertainty in continuum model for NN PDF	-	33	-	4.8
Total	-25	55	+1.5	5.2

• Corrections and systematics on the Branching Fraction:

Source	Correction (%)	Uncertainty (%)
Measurement of N _{Sig}	-	15
Number of BB pairs	-	1.1
π^0 Reconstruction	-2.54	3
Track Reconstruction	-1.5	3.9
Particle Identification	-	1.1
Total	-4.04	16

 Systematics on the Charge Asymmetry A_{CP}:

Source	Uncertainty (%)
Particle Identification	4
Track reconstruction	0.45
Asymmetry in B-backgrounds	8.5
Total	9

- We have measured (preliminary!):
 - Branching Fraction, $B = (17.2 \pm 2.5(\text{stat.}) \pm 2.8(\text{syst.})).10^{-6}$
 - Longitudinal Polarization, $f_L = 0.96 \pm 0.04 \pm 0.05$
 - Charge Asymmetry, $A_{CP} = 0.10 \pm 0.14 \pm 0.09$
- $B^+ \rightarrow \rho^+ \rho^0$ is almost 100% longitudinally polarized, as seen in previous measurements
- Measured *B* is smaller than previous measurements (but still consistent)
 - In better agreement with the isospin hypothesis
 - Improves our understanding of the penguin pollution uncertainty on $\boldsymbol{\alpha}$

Backup Slides

Previous Measurements

Belle analysis (*Phys. Rev. Lett.* **91**, 221801) with $78 \, \text{fb}^{-1}$:

→
$$\mathcal{B} = \left(31.7 \pm 7.1(\text{stat})^{+3.8}_{-6.7}(\text{syst})\right) \times 10^{-6},$$

►
$$f_L = 0.95 \pm 0.11(\text{stat}) \pm 0.02(\text{syst}),$$

► $\mathcal{A}_{CP} = 0.00 \pm 0.22 (\text{stat}) \pm 0.03 (\text{syst}).$

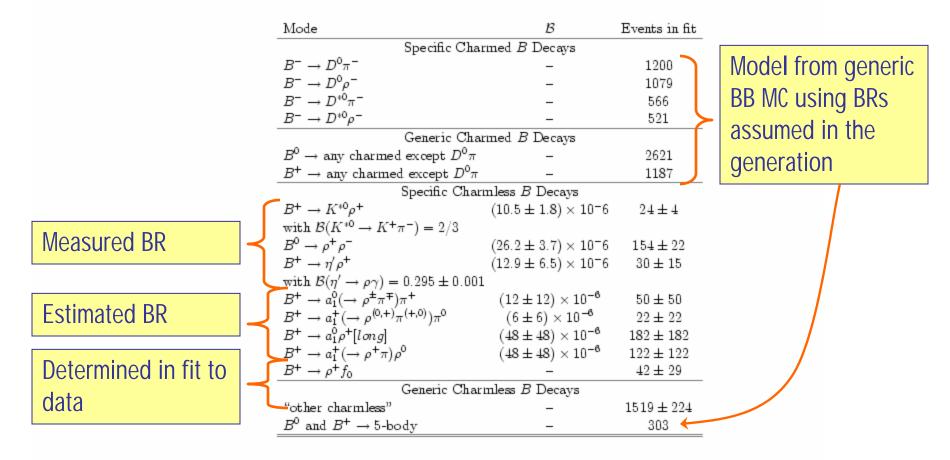
BABAR analysis by LBL (BAD 483, Phys. Rev. Lett. 91, 171802) with $81.9 \, \text{fb}^{-1}$:

⇒
$$\mathcal{B} = (22.5^{+5.7}_{-5.4}(\text{stat}) \pm 5.8(\text{syst})) \times 10^{-6},$$

►
$$f_L = 0.97^{+0.03}_{-0.07}$$
(stat) ± 0.04(syst),

►
$$\mathcal{A}_{CP} = -0.19 \pm 0.23 (\text{stat}) \pm 0.03 (\text{syst}),$$

BABAR analysis by Saclay (BAD 692, unpublished) with 81.9 fb⁻¹: $\Rightarrow \mathcal{B} = (17.9^{+3.3}_{-3.2}(\text{stat}) \pm 2.4(\text{syst})) \times 10^{-6},$ $\Rightarrow f_L = 0.87^{+0.06}_{-0.07}(\text{stat}) \pm 0.05(\text{syst}),$ $\Rightarrow \mathcal{A}_{CP} = -0.02 \pm 0.09(\text{stat}) \pm 0.04(\text{syst}).$


This analysis: based on BAD692, with improvements to the model, performed on the Run1-4 dataset

Event Selection and Efficiencies

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				Selection criteria		Signal [long]	Signal [tr	an]	Data [off-res]
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Skim selection			_			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				BFourHHHP and 1	$m_{ES} > 5.24{ m GeV}/c$	$47.5 \pm 0.5 \%$	41.9 ± 0.4	1%	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				tracks	PID				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			and the second se	-	p [±] -veto		$98 \pm 2\%$		$88 \pm 1\%$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 Startes		e [±] -veto		$98 \pm 2\%$		$91 \pm 1\%$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1 and the second		K [±] -veto		$94 \pm 2\%$		$56 \pm 1\%$
Multiple B Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} mass $0.01 < LAT_{\gamma} < 0.60$ $ \cos(\pi^{0}, \gamma) < 0.95$ $\frac{\rho \text{mesons}}{\rho + 1} < 771 < 375 \text{ MeV/c}^{2}$ $m_{\rho^{0}} > 520 \text{ MeV/c}^{2}$ $m_{\rho^{0}} > 520 \text{ MeV/c}^{2}$ $m_{\rho^{0}} > 520 \text{ MeV/c}^{2}$ $m_{\rho^{0}} > 520 \text{ MeV/c}^{2}$ $99 \pm 2\%$ $99 \pm 3\%$ $90 \pm 1\%$ $90 \pm 1.00\%$ $90 \pm 0.0\%$ $90 \pm 1.00\%$ $90 \pm 0.0\%$ $90 \pm 0.0\%$ 			¥	γ and	γ and π^{0}				
Use the second to expedite the fitting process $0.01 < LAT_{\gamma} < 0.00$ $95 \pm 2\%$ $92 \pm 2\%$ <t< th=""><th></th><th>m cu</th><th>t was</th><th>$E_{\gamma} > 50$</th><th>0 MeV</th><th>$95 \pm 2\%$</th><th>95 ± 29</th><th>76</th><th>$90 \pm 2\%$</th></t<>		m cu	t was	$E_{\gamma} > 50$	0 MeV	$95 \pm 2\%$	95 ± 29	76	$90 \pm 2\%$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							97 ± 29	76	$92 \pm 2\%$
Multiple B Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} massMultiple E ($m_{p^{0}} + -\pi + \pi^{0} - 1.8645 > 0.04 \text{ GeV}/c^{2}$ $M_{p^{0}} > 5.20 \text{ MeV}/c^{2}$ $M_{p^{0}} > 520 \text{ MeV}/c^{2}$ $M_{p^{0}} > 92 \pm 2\%$ $M_{p^{0}} > 92 \oplus 42\%$ $M_{p^{0}} > 92 \oplus 42\%$ M		lighter	ied to	$\cos(\pi^0, \gamma)$) < 0.95	$99 \pm 2\%$	99 ± 29	76	$99 \pm 2\%$
Multiple B Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} massMultiple E ($m_{p^{0}} + -\pi + \pi^{0} - 1.8645 > 0.04 \text{ GeV}/c^{2}$ $M_{p^{0}} > 5.20 \text{ MeV}/c^{2}$ $M_{p^{0}} > 520 \text{ MeV}/c^{2}$ $M_{p^{0}} > 92 \pm 2\%$ $M_{p^{0}} > 92 \oplus 42\%$ $M_{p^{0}} > 92 \oplus 42\%$ M		expedi	te the						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							-	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Inting process								
Multiple B Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} mass $\frac{D^{0} \text{ veto}}{ m_{D^{0} \rightarrow \pi^{-}\pi^{+}\pi^{0}} - 1.8645 > 0.04 \text{ GeV}/c^{2}}{ \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps}$ $ \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps$ $ \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps$ $ \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps$ $ B \pm 2\%$ $95 \pm 2\%$ $96 \pm 2\%$ $96 \pm 2\%$ $96 \pm 2\%$ $95 \pm 2\%$ $91 \pm 1\%$ $91 \pm 1\%$ $91 \pm 1\%$ $91 \pm 1\%$ $91 \pm 1\%$ $91 \pm 0.5\%$ $99.9 \pm 0.9\%$ $92.03 \pm 0.12\%$ $97.69 \pm 0.07\%$ $$ TOTAL Signal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)									
Multiple B Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} mass $ m_{D^{0} \rightarrow \pi^{-}\pi^{+}\pi^{0}} - 1.8645 > 0.04 \text{ GeV}/c^{2}$ $ m_{D^{0} \rightarrow \pi^{-}\pi^{+}\pi^{0}} - 1.8645 > 0.04 \text{ GeV}/c^{2}$ $ B candidates \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps \Delta E < 150 \text{ MeV}1.1 < \Sigma p_{t,ROE} < 5.6\pi_{NN} < 1 DG \pi^{0} mass95 \pm 2\%96 \pm 2\%96 \pm 2\%96 \pm 2\%98.85 \pm 0.03\%98.79 \pm 0.04\%91 \pm 1\%90 \pm 1\%91 \pm 1\%91 \pm 1\%91 \pm 0.5\%91.9 \pm 0.9\%92.03 \pm 0.12\%97.69 \pm 0.07\%TOTALSignal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)$			$85 \pm 2\%$	$99 \pm 2\%$		88±3%			
Multiple B Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} mass $ \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps$ $ \Delta E < 150 \text{ MeV}$ $1.1 < \Sigma p_{t,ROE} < 5.6\pi_{NN} < 1m_{ES} > 5.26 \text{ GeV/c}98 \pm 2\%98 \pm 2\%100 \pm 2\%98 \pm 2\%95 \pm 2\%96 \pm 2\%96 \pm 2\%96 \pm 2\%98 \pm 2\%95 \pm 2\%96 \pm 2\%96 \pm 2\%96 \pm 2\%91 \pm 1\%90 \pm 1\%91 \pm 1\%91 \pm 1\%91 \pm 1\%91 \pm 0.5\%91 \pm 0.9\%92.03 \pm 0.12\%97.69 \pm 0.07\%TOTALDEFINESignal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)$						07 ± 2 %	00 ± 20	7.	08 + 3 %
Candidates: select event with reconstructed π^{0} mass closest to PDG π^{0} massB candidates $ \Delta t < 20ps \text{ and } \sigma_{\Delta t} < 2.5ps$ $ \Delta E < 150 \text{ MeV}$ $1.1 < \Sigma p_{t,ROE} < 5.6$ $\pi_{NN} > 0$ $95 \pm 2\%$ $96 \pm 2\%$ $91 \pm 1\%$ $91 \pm 1\%$ $99.1 \pm 0.5\%$ $99.9 \pm 0.9\%$ $92.03 \pm 0.12\%$ $97.69 \pm 0.07\%$ TOTAL Signal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)	Multiple B								
select event with reconstructed π^{0} mass closest to PDG π^{0} mass $ \Delta E < 150 \text{ MeV}$ $1.1 < \Sigma p_{t,ROE} < 5.6$ $x_{NN} > 0$ $92 \pm 2\%$ $96 \pm 2\%$ $98.85 \pm 0.03\%$ $91 \pm 1\%$ $91 \pm 1\%$ $91 \pm 1\%$ $91 \pm 0.4\%$ $91 \pm 0.5\%$ $99.9 \pm 0.9\%$ $92.03 \pm 0.12\%$ $97.69 \pm 0.07\%$ $70 \pm 3\%$ $90 \pm 1\%$ $91 \pm 1\%$ $92.03 \pm 0.12\%$ $92.03 \pm 0.12\%$ $92.03 \pm 0.07\%$ TOTALSignal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)	-	-					100 ± 2	/0	55 ± 0 /0
reconstructed π° mass closest to PDG π° mass $ \Delta E < 150 \text{ MeV}$ $1.1 < \Sigma p_{t,ROE} < 5.6$ $x_{NN} > 0$ $92 \pm 2\%$ $96 \pm 2\%$ $98.85 \pm 0.03\%$ $98.79 \pm 0.04\%$ $91 \pm 1\%$ $91 \pm 1\%$ $99.1 \pm 0.5\%$ $99.9 \pm 0.9\%$ $99.9 \pm 0.9\%$ $92.03 \pm 0.12\%$ $97.69 \pm 0.07\%$ TOTALSignal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)	select event with		$ \Delta t < 20 ps$ an	$ \Delta t < 20 ps$ and $\sigma_{\Delta t} < 2.5 ps$		$96 \pm 2\%$		$89 \pm 3\%$	
mass closest to PDG π^{o} mass1.1 < $2p_{4,ROE} < 5.6$ $x_{NN} > 0$ 98.85 $\pm 0.03\%$ 98.79 $\pm 0.04\%$ 95.75 $\pm 0.33\%$ 90 $\pm 1\%$ 91 $\pm 1\%$ 46 $\pm 1\%$ 99.1 $\pm 0.4\%$ 99.1 $\pm 0.5\%$ 99.9 $\pm 0.9\%$ 92.03 $\pm 0.12\%$ 97.69 $\pm 0.07\%$ TOTALSignal (Lg)Signal (Tr)SxF (Lg)SxF (Tr)Data (Off-res)			$ \Delta E < 1$	$ \Delta E < 150 { m MeV}$		$96 \pm 2\%$		$70 \pm 3\%$	
PDG π^{o} mass $x_{NN} < 1$ $99.1 \pm 0.4\%$ $99.1 \pm 0.5\%$ $99.9 \pm 0.9\%$ TOTAL Signal (Lg) Signal (Tr) SxF (Lg) SxF (Tr) Data (Off-res)			$1.1 < \Sigma p_{t,\mathrm{H}}$	$1.1 < \Sigma p_{t, \text{ROE}} < 5.6$		$98.79 \pm 0.04\%$		$95.73 \pm 0.33\%$	
TOTAL Signal (Lg) Signal (Tr) SxF (Lg) SxF (Tr) Data (Off-res)	mass closest to		x_{NN}	$x_{NN} > 0$		$91 \pm 1 \%$		$46 \pm 1\%$	
$m_{ES} > 5.26 \text{ GeV/c}$ $92.03 \pm 0.12\%$ $97.69 \pm 0.07\%$ $$ TOTAL Signal (Lg) Signal (Tr) SxF (Lg) SxF (Tr) Data (Off-res)	PDG π^{o} mass		x_{NN}	$x_{NN} < 1$		$99.1 \pm 0.5 \%$		$99.9 \pm 0.9 \%$	
			$m_{ES} > 5.2$	$m_{ES} > 5.26 { m GeV}/c$		$2.03 \pm 0.12\%$ 97.69 $\pm 0.07\%$			
EFF'S 8.4% 18.6% 4.6% 3.0% 0.03%	TOTAL	Signal	(Lg)	Signal (Tr)	SxF (Lg)	SxF	(Tr)	Da	ita (Off-res)
	EFF'S	8.4% 18.6% 4.6%		4.6%	3.0%		0.03%		

B-Backgrounds

- Most peaking backgrounds are suppressed by the D-veto
- 16 B-Backgrounds are modeled in the fit
- All KEYS PDFs

Signal & qq Continuum Model

PDF parametrizat	KEYS = non-parametric PDF G = Gaussian BG = Bifurcated Gaussian Pn = n th order polynomial			
Variable	Signal	qq Continuum		
m _{ES}	KEYS	Argus		
ΔΕ	G+G	P2		
x _{NN}	KEYS	G+BG		
cosθ _{ρ+}	P6			
cosθ _{ρ0}	P6+G	2D Model		
m _{p+}	G+G+G			
m _{p0}	G+G+G			