Mass Generation without a Higgs Strongly Coupled Systems.

Richard Williams

Institute for Particle Physics Phenomenology University of Durham (Supervisor: M.R. Pennington)

IOP HEPP Conference, April 12th 2006

Outline

- Mass
 - The Higgs Mechanism
 - Current and Constituent Masses
 - Dynamical Mass Generation
- Schwinger-Dyson Equations
 - QED in Four Dimensions
 - QED in Three Dimensions

- Consequence of EW interactions: explicit fermion mass terms break GI.
- The particles corresponding to these fields indeed have mass - introduce this without breaking GI.
- Employ the Higgs to give these mass through spontaneous symmetry breaking.
- Other mechanisms (technicolour, little higgs, $t\bar{t}$ condensate etc) have been proposed to achieve similar effects. Not without their own problems.
- While a necessary part of the theory, doesn't answer all questions regarding particle masses - notably the connection between the quark picture and the hadrons we observe.

- Consequence of EW interactions: explicit fermion mass terms break GI.
- The particles corresponding to these fields indeed have mass - introduce this without breaking GI.
- Employ the Higgs to give these mass through spontaneous symmetry breaking.
- Other mechanisms (technicolour, little higgs, $t\bar{t}$ condensate etc) have been proposed to achieve similar effects. Not without their own problems.
- While a necessary part of the theory, doesn't answer all questions regarding particle masses - notably the connection between the quark picture and the hadrons we observe.

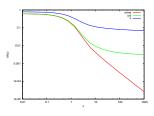
- Consequence of EW interactions: explicit fermion mass terms break GI.
- The particles corresponding to these fields indeed have mass - introduce this without breaking GI.
- Employ the Higgs to give these mass through spontaneous symmetry breaking.
- Other mechanisms (technicolour, little higgs, $t\bar{t}$ condensate etc) have been proposed to achieve similar effects. Not without their own problems.
- While a necessary part of the theory, doesn't answer all questions regarding particle masses - notably the connection between the quark picture and the hadrons we observe.

- Consequence of EW interactions: explicit fermion mass terms break GI.
- The particles corresponding to these fields indeed have mass - introduce this without breaking GI.
- Employ the Higgs to give these mass through spontaneous symmetry breaking.
- Other mechanisms (technicolour, little higgs, tt condensate etc) have been proposed to achieve similar effects. Not without their own problems.
- While a necessary part of the theory, doesn't answer all questions regarding particle masses - notably the connection between the quark picture and the hadrons we observe.

- Consequence of EW interactions: explicit fermion mass terms break GI.
- The particles corresponding to these fields indeed have mass - introduce this without breaking GI.
- Employ the Higgs to give these mass through spontaneous symmetry breaking.
- Other mechanisms (technicolour, little higgs, tt condensate etc) have been proposed to achieve similar effects. Not without their own problems.
- While a necessary part of the theory, doesn't answer all questions regarding particle masses - notably the connection between the quark picture and the hadrons we observe.

Quantum Chromodynamics.

- Quarks and Gluons Described by QCD with small number of basic interactions.
- Hadrons much more difficult to describe, yet arise from the same theory.
- (p, n), (π^{\pm}, π^{0}) have same strong interactions and similar masses. Isospin symmetry.
- From this $m_p \sim m_n$ so expect $m_u \sim m_d$ QCD indeed has approximate SU(2) symmetry.



Current and Constituent Masses

For QCD with two flavours $\psi = \begin{pmatrix} u \\ d \end{pmatrix}$, $M = \begin{pmatrix} m_u \\ m_d \end{pmatrix}$:

$$\mathcal{L}=ar{\psi}\left(extbf{i}\gamma^{\mu} extbf{D}_{\mu}- extbf{M}
ight)\psi-rac{1}{4}\mathcal{G}_{\mu
u}\mathcal{G}^{\mu
u}$$

- Mass entering \mathcal{L} the *current* mass, of order *MeV*.
- Compares with constituent mass of order ~ 300 MeV.

- Light quark current masses $\ll \Lambda_{QCD} \longrightarrow m_u = m_d = 0$ to good approximation.
- Opens up larger chiral symmetry, which is NOT seen in Hadron world.
 - i.e. ∃ no simple relation between masses of scalars and pseudoscalars etc.
- Due to complicated nature of the "vacuum". QED: Dirac sea of e^+ e^- pairs. QCD: $q\bar{q}$ pairs, glue and **condensates**.
- Over short distances quarks travel quickly asymptotic freedom. Over larger distances move slowly - corresponds to the dynamical generation of mass.

- Light quark current masses $\ll \Lambda_{QCD} \longrightarrow m_u = m_d = 0$ to good approximation.
- Opens up larger chiral symmetry, which is NOT seen in Hadron world.
 - i.e. \exists no simple relation between masses of scalars and pseudoscalars etc.
- Due to complicated nature of the "vacuum". QED: Dirac sea of e^+ e^- pairs. QCD: $q\bar{q}$ pairs, glue and **condensates**.
- Over short distances quarks travel quickly asymptotic freedom. Over larger distances move slowly - corresponds to the dynamical generation of mass.

- Light quark current masses $\ll \Lambda_{QCD} \longrightarrow m_u = m_d = 0$ to good approximation.
- Opens up larger chiral symmetry, which is NOT seen in Hadron world.
 - i.e. \exists no simple relation between masses of scalars and pseudoscalars etc.
- Due to complicated nature of the "vacuum".
 QED: Dirac sea of e⁺ e⁻ pairs.
 QCD: qq̄ pairs, glue and condensates.
- Over short distances quarks travel quickly asymptotic freedom. Over larger distances move slowly - corresponds to the dynamical generation of mass.

- Light quark current masses $\ll \Lambda_{QCD} \longrightarrow m_u = m_d = 0$ to good approximation.
- Opens up larger chiral symmetry, which is NOT seen in Hadron world.
 - i.e. \exists no simple relation between masses of scalars and pseudoscalars etc.
- Due to complicated nature of the "vacuum". QED: Dirac sea of e^+ e^- pairs. QCD: $q\bar{q}$ pairs, glue and **condensates**.
- Over short distances quarks travel quickly asymptotic freedom. Over larger distances move slowly - corresponds to the dynamical generation of mass.

Dynamical Mass Generation.

Current masses \sim 0 MeV, Constituent masses \sim 300 MeV. Experiment indicates non-trivial vacuum.

• Can this be seen from theoretical calculations of QCD?

Perturbation Theory

$$\mathcal{M}(p) = m_0 \left(1 + c_1 \alpha_\mu \log \left(p^2/\mu^2\right) + c_2 \alpha_\mu^2 \log^2 \left(p^2/\mu^2\right) + \cdots\right)$$

- Cannot attain non-zero dressed mass if bare mass is zero with PT.
- Require non-perturbative methods

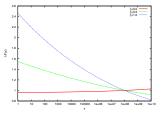
Schwinger Dyson Equations QED in Four Dimensions.

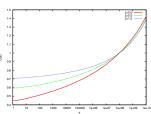
We can depict the equations diagrammatically.

$$\frac{1}{\mathcal{F}} = 1 - \int d\tilde{k} \operatorname{Tr} \left[\not p \gamma^{\mu} S(k) \Gamma^{\nu} \right] D_{\nu\mu}$$

$$\frac{\mathcal{M}}{\mathcal{F}} = m_0 + \int d\tilde{k} \operatorname{Tr} \left[\gamma^{\mu} S(k) \Gamma^{\nu} \right] D_{\nu\mu}$$

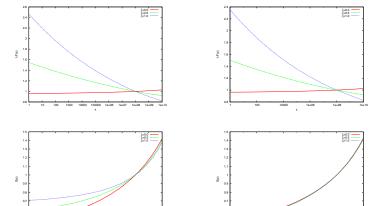
$$\frac{1}{\mathcal{G}} = 1 - \mathcal{P}_{\mu\nu} \int d\tilde{k} \operatorname{Tr} \left[\gamma^{\mu} S(k) \Gamma^{\nu} S(p) \right]$$


• These in turn depend upon higher order green's functions:



ξ Dependence of Physical Observables.

Rainbow-Vertex



Solutions for a vertex violating GI and MR. Photon wavefunction renormalisation is gauge dependent.

ξ Dependence of Physical Observables.

Rainbow-Vertex KP-Vertex

Critical couplings and mass generation in QED4.

QED in Three Dimensions.

A Toy Model with Confi nement

- Very different to QED4:
 - Super-renormalisable.
 - Dimensionful coupling naturally sets scale for dynamics.
 - Exhibits a confi ning phase.
- Thus QED3 is a good toy model to develop NP techniques.
- DMG occurs ∀ values e². May exist a critical number of flavours above which no DMG occurs.

[Review: Appelquist & Wijewardhana, hep-ph/0403250]

 LKFT applied directly in momentum space - fourier transforms performed analytically. Tool for refining model.

[Bashir, Raya, hep-ph/0511291]

Criticality

- Studies generally conclude DMG ↔ χSB if number of four-component fermions < N_{F,crit}.
- Theory is UV-complete. $N_{F,crit}$ governed by IR-fixed point.
- 1/N_F expansion unreliable due to presence of large logarithms.
- Lattice studies severely hampered by finite-size effects.
 Cannot determine whether QED is in symmetric or broken phase for given N(=2).
- Determination of this critical value may be useful for condensed matter systems.

Gauge Dependence in unquenched QED3.

Chiral Condensate for QED3 (units $10^{-5}e^4$) for different N_F and gauges. Computed via hybrid CP/BC vertex.

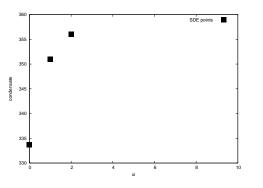
· • • • • • • • • • • • • • • • • • • •									
	ξ	$N_f = 0$	$N_f = 1$	$N_f = 2$	$N_f = 3$	$N_f = 4$	$N_f = 5$	$N_f = 6$	
	0	333	121	13	0.026	??	0	0	
	0.5	340	165	79	39	23	15	11	
	1	351	202	108	74	55	37	29	
	2		259	189	143	107	92	77	
						rafas Dalam Mas			

Fischer, Alkofer, Dahm, Maris, hep-ph/0407104

- Gauge dependence clearly worse for increasing flavours.
- No evidence for critical value except in Landau gauge.
- Clearly gauge transformation inconsistent with LKFT.

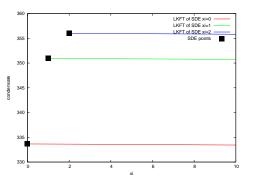
Gauge Dependence in unquenched QED3.

Chiral Condensate for QED3 (units $10^{-5}e^4$) for different N_F and gauges. Computed via hybrid CP/BC vertex.

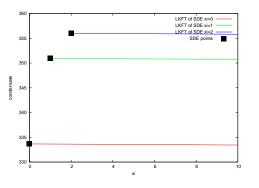

	ξ	$N_f = 0$	$N_f = 1$	$N_f = 2$	$N_f = 3$	$N_f = 4$	$N_f = 5$	$N_f = 6$
	0	333	121	13	0.026	??	0	0
	0.5	340	165	79	39	23	15	11
	1	351	202	108	74	55	37	29
	2	356	259	189	143	107	92	77
	[Figebox Alkefox Dohm Maria han ph/04074041							

[Fischer, Alkofer, Dahm, Maris, hep-ph/0407104]

- Gauge dependence clearly worse for increasing flavours.
- No evidence for critical value except in Landau gauge.
- Clearly gauge transformation inconsistent with LKFT.


Landau-Khalatnikov-Fradkin Transformation Application to SDE results.

- SDE solutions show some gauge dependence on condensate.
- LKF transforms condensate consistent with gauge invariance.
- LKF transforms correctly for all SDE solutions.
- Gives no indication as to the true starting solution.


Landau-Khalatnikov-Fradkin Transformation Application to SDE results.

- SDE solutions show some gauge dependence on condensate.
- LKF transforms condensate consistent with gauge invariance.
- LKF transforms correctly for all SDE solutions.
- Gives no indication as to the true starting solution.

Landau-Khalatnikov-Fradkin Transformation Application to SDE results.

- SDE solutions show some gauge dependence on condensate.
- LKF transforms condensate consistent with gauge invariance.
- LKF transforms correctly for all SDE solutions.
- Gives no indication as to the true starting solution.

Summary

- Putting masses in Lagrangian is insufficient. An understanding of dynamical effects is required.
- DχSM in QED3 is an IR continuum effect. Lattice is not well suited.
- Ensuring symmetries are not broken by ansatz is key to developing models.
- Outlook
 - Adapt our best QED4 vertex for QED3. Investigate criticality.
 - Apply developments to QCD for the study of bound states.

