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HERA & ZEUS

• HERA collides 920 GeV p with 27.6 GeV e±, centre of mass energy 318 GeV.

• ZEUS one of two multi-purpose colliding experiments, main components are
central tracking detector (CTD) and calorimeter (CAL).

• Upgraded detector includes new silicon micro vertex detector (MVD).

• Nearly 200 pb−1 data collected from HERA-II, hopefully 500 pb−1 more to come!
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Charm Production in DIS

• Charm production in DIS is a testing ground for QCD.

• mcharm � ΛQCD ⇒ perturbative calculations can be performed.

• Dominant contribution is Boson Gluon Fusion (γg → qq), sensitive to gluon
distribution of proton.
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• Charm tagged through detection of charmed hadrons.

– Exclusive: BR(c → D∗ → D0 → Kππ) = 0.66%

– Inclusive: BR(c → e) = 10.3%

Mark Bell, Oxford University 3



Particle Identification at ZEUS for Semi-Leptonic Decays of Charm IOP: Particle Physics 2006, Warwick, 10-12 April 2006

Semi-Leptonic Decays of Charmed Hadrons

• Inclusive measurement of c → eνeX.

• Identify electrons through combination of energy deposit in calorimeter and dE/dx
measurement in gaseous Central Tracking Detector (CTD).

Calorimeter Energy Response
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• Major backgrounds:

– Photon conversions (γ → e+e−).

– Dalitz decays of neutral pions (π0 → γe+e−).

– Hadrons which fake electrons.

– Semi-leptonic decays of beauty.
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CTD dE/dx

• CTD is a gas filled wire drift chamber, 83% Ar, 12% CO2, 5% C2H6.

• Contains 4608 sense wires arranged in 9 superlayers, 8 layers of wires per
superlayer.

• Energy loss of charged particles in CTD gas proportional to charge signal detected
on sense wires.

Raw FADC pulse size

Pions from K0 FADC counts
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Corrected dE/dx

Pions from K0s dE/dx (mips)

N
u

m
b

er
 o

f 
tr

ac
ks

0

1000

2000

3000

4000

5000

x 10 2

0 0.5 1 1.5 2 2.5 3

• Truncated mean of pulse heights on a particle’s track taken to calculate dE/dx.

• Corrections made for a number of factors including path length, wire gains, drift
distance, environmental conditions.
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dE/dx Parametrisation

• dE/dx parametrisation:

– test function for likelihood method

– simulation of dE/dx in MC

• Large known particle samples
collected:

– K0
s → π+π−

– Λ0 → pπ
– NC DIS e±

– γ → e+e−

• Only tracks passing through all 9
superlayers of CTD used to get best
dE/dx measurement.

Corrected CTD dE/dx V momentum
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dE/dx Parametrisation

• dE/dx only depends on βγ, independent of particle type.

• Spectrum fitted with Bethe-Bloch function corrected to fit data.

Corrected CTD dE/dx V βγ
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dE/dx for all samples V βγ
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dE/dx Parametrisation

• Shape of dE/dx spectrum needs to be fitted to properly describe data.

• Fits performed on spectrum in bins of βγ for all the different particle samples.

• Different functions tried:
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dE/dx for pions from K0s
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dE/dx for NC DIS electrons

Landau fit
Gaussian fit
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• Landau function slightly better at describing tails of distribution.
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dE/dx Simulation

• Landau fit parameters can be plotted and fit as a function of βγ.

• Accurate parametrisation and simulation of value and shape of dE/dx can be made.
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Summary

• Charm production plentiful at HERA.

• Semi-leptonic decays to electrons provide a large branching ratio.

– Comparing to D∗ → D0 → Kππ, making large assumptions about effiencies and
acceptances, expect of the order of 50,000 e± for 200 pb−1.

• Measurement, parametrisation and simulation of dE/dx crucial to electron
identification.

• MVD offers possibility of second independent measurement of dE/dx.
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