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Overview

= MICE and muon cooling

= Accelerator simulation
= Solenoids
= Liquid Hydrogen
= RF Cavities
= Simulated transverse emittance resolution
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Neutrino Factory

= Intense, high energy and pure

source of neutrinos

= High precision measurement of
neutrino mixing and possible

leptonic CP violation
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Beam Emittance

= Define “beam size” in a 2N dimensional phase space
by quantity called beam emittance, ¢,
= Volume of an ellipse aligned with beam at 1 rms
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= Where V is the covariance matrix of canonical phase
space coordinates e.g. X,y,p,, Py



‘ Muon Cooling

= Muon cooling increases beam phase space density
using material placed across the beamline
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Muon Cooling

= Muon cooling increases beam phase space density
using material placed across the beamline
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= By cooling we can fit more muons into our
accelerator and improve the neutrino rate
= Liquid Hydrogen is the optimal material to use

= Multiple scattering heats the beam
= Liquid Hydrogen has more dE/dx vs multiple scattering




= Aim is to measure reduction in beam emittance over
a cell of a cooling channel
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= Detectors measure phase space vector of particles and
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= Aim is to measure reduction in beam emittance over
a cell of a cooling channel

= Detectors measure phase space vector of particles and
distinguish muons from pions and electrons

= Liquid Hydrogen absorbers provide cooling
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= RF Cavities keep beam momentum ~ constant



= Aim is to measure reduction in beam emittance over
a cell of a cooling channel

= Detectors measure phase space vector of particles and
distinguish muons from pions and electrons

= Liquid Hydrogen absorbers provide cooling
= RF Cavities keep beam momentum ~ constant
= Coils provide transverse focusing



Aim is to measure reduction in beam emittance over
a cell of a cooling channel

Challenging to build
Ionisation cooling has never been demonstrated

Reproduce and measure emittance to unprecedented
0.1% precision

Simulated in MICE’s customised accelerator, detector
and beam optics package G4MICE, based in GEANT4



Solenoid Simulation

Solenoid B-field model
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i ) ] Number of sheets
= Solenoid simulated using concentric cylindrical

current sheets
= Analytical model for one sheet is well known

= In the limit of a large number of sheets, expect to achieve
good field model

= We will measure the fields and compare with this model
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Liquid Hydrogen and RF Simulation

Transverse emittance change in LH, Fields in RF cavity
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= Simulated cooling power for a typical MICE beam in a
liquid Hydrogen absorber
= Compare G4MICE with a well known software package
= Compare realistic absorber with cylindrical absorber

= Simulated accelerating field in a MICE RF Cavity

*ICOOL simulation code, Fernow, Proc. Particle Accelerator Conference 1999



MICE Baseline Magnetic Lattice
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= 8 coils of cooling lattice chosen to:
= Maximise beam accepted into cooling channel
= Focus muons at the absorbers
= Minimise scraping
= 6 coils in Spectrometer solenoids provide up to 4T field constant
to 1% over fiducial volume

= 4 matching coils control beam from spectrometer to cooling
lattice



Simulated Cooling Performance

Emittance
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= Simulated cooling performance for typical beams

« Simulated using MICE's customised beam tracking, detector
modelling and beam optics analysis package based on GEANT4

= Simulated for a typical MICE case

= MICE is designed to run with many different input emittances and
input momenta



Measurement Requirement

Emittance through a Neutrino

< == Factory Cooling Channel*
(© _
E S - Transverse Emittance [x mm mrad]
B o Longitudinal Emittance [x cm mrad]
Q o] ¥R
8 . R S T —
§ e
é 1 i 1 el! i i 15 Qp ~
L
z [m]
= Desire to extrapolate measurement from 1 cell to

many

= Small error on a single cell measurement has a
significant impact on prediction of emittance for
many cells

= In practice several measurements will be made with

different emittance beams for a given setting

= But the errors will not be independent
*Feasibility Study II of a Muon Based Neutrino Source, 2001, ed. Ozaki, Palmer, Zisman, Gallardo



Simulated Transverse Emittance Ve
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= Emittance resolution better than 0.5% for beam
emittances in the region of interest

= Most of the error can be removed by careful
calibration

=« Emittance resolution limited by statistics for a given
measurement given a very precise calibration
= Even if we can only estimate the resolutions to ~10%, we
can still measure emittance to the desired precision
*C.Rogers, M. Ellis, Proc. Particle Accelerator Conference 2005, MPE013



Summary

MICE looking to measure emittance to high precision
= Unprecedented precision for emittance measurement

Detector design is approaching completion
= High resolution tracking and time of flight measurements
= Precise particle identification

Construction of MICE has begun
First beam October 2007



