Some possible interpretations from data of the CODALEMA experiment

P. Lautridou for CODALEMA - SUBATECH Nantes

Study the of the radio-detection method in the energy range of 10¹⁶-10¹⁸ eV @Nançay Purpose of these analyzes:

Try to go further on some previous studies (potential of some observables)

•Study of an energy estimator => internal correlations (with the original setup)

•Study of the wave fronts (first step in retrieving information about the incoming wave) => source identification (made necessary with the autonomous stations)

CODALEMA 2006-11 @ Nançay (0.25 km²)

Antenna array in slave mode of the scintillator array

Radio array -24 dipole antennas

cross: 600 m x 500 m 21 ant. in E-W polarization 3 ant. in N-S polarization Analyzes in 24-82 MHz

-Decametric Array

Cables + central acquisition 12 bits ADC @ 1 Gsample/s, 2.5 μs

Particle array

17 scintillator stations: square 350 m x 350 m

Trigger: the 5 central particle stations

Internal Showers: higher signal in central stations

Core Position + Direction + Energy (via CIC method)

Study of an energy estimator

Coincidences in E-W polarization with internals

Criteria on: angle, time, core position

- + antennas > 4 + $\log_{10}(E_p)$ > 16.6
- = 315 events retained

Event overall features

Energy calibration of particle detector array

(for internal events)

- => NKG distribution
- => CIC method
- $=> \sigma(E_{p})/E_{p}=30\%$

Radio Lateral Distribution Function

 $\varepsilon = \varepsilon_0 e^{-d/d0}$

=> Extract the electric field at the shower core ε_{0}

Error estimation on ε_0 by

Monte-Carlo => $\sigma(\epsilon_0)/\epsilon_0$ =22%

Relationship between ε₀ and E_p

Compatible with linear dependence

Adjustment with $\varepsilon_0 = \alpha \cdot E_n + \beta$

=> Minimization of

$$\chi^2 = \Sigma_i \left[\epsilon_0 - (\alpha \cdot E_p + \beta) \right]^2 / \left[\sigma^2(\epsilon_0) + \alpha^2 \cdot \sigma^2(E_p) \right]$$
With $\sigma(\epsilon_0)/\epsilon_0 = 22\%$, $\sigma(E_p)/E_p = 30\%$

Inversion => Energy radio: $E_0 = 1/\alpha \cdot \epsilon_0 - \beta/\alpha$

Characterization of the distribution (E_p,E₀)

=> Distribution of the relative differences $(E_p-E_0)/E_p$

=> Analysis of $\sigma(E_p - E_0)/E_p$

(due to the tail, standard deviation used instead of Gaussian adjustment)

Error on $(\sigma(E_p-E_0)/E_p) = \sqrt{2.\sigma^2/(N-1)^{1/2}} \sim 0.1\% - 1\%$

Taking into account the the geomagnetic effect

=> Correction by the geomagnetic effect

$$\varepsilon_{0} \sim E \cdot |(\mathbf{v} \wedge \mathbf{B})_{EW}|$$
 $\varepsilon_{0}' \sim E \cdot |(\mathbf{v}' \wedge \mathbf{B})_{EW}|$

$$=> \epsilon_0 \rightarrow \epsilon_0 / |(\mathbf{v} \wedge \mathbf{B})_{EW}|$$

- =>Overestimation of the energy for events near the geomagnetic field
 - Relevant of ε_0 with the geomagnetic correction ?
 - => Arguments of counting:
 - Events are detected
- Uniform detection expected for higher energies (near the geomagnetic field)

=> an additional contribution to the correction

Simplest assumption:

Additional contribution proportional to the total charge produced in the shower

$$\varepsilon_{0} \sim \text{E.}|(\mathbf{v} \wedge \mathbf{B})_{\text{EW}}| + \text{E.c}$$
 $\varepsilon_{0} \rightarrow \varepsilon_{0} /(|(\mathbf{v} \wedge \mathbf{B})_{\text{EW}}| + c)$

Range of the parameters $0<|(\mathbf{v}_{\wedge}\mathbf{B})_{\text{EW}}|<1$ $0<<<\dots$

<u>Full sample</u> => min=0.31 for c=0.95 <u>Sub-samples</u> => exhibit angular dependencies

•best result obtained for |v^B|>0.82 and c=0 => geomagnetic dominates

•for low |v^B| => best result with large c=> E.c dominates

Association of the second term to an existing electric field

- Component // shower axis ?

=> $\varepsilon_0 \sim \text{E.}|(\mathbf{v} \wedge \mathbf{B})_{\text{EW}}| + \text{E.c.}|\sin\theta \sin\phi|$ (zenith θ, azimuth φ)

=> not favored

=> Possible interpretations (with the present statistic) $\epsilon_0 \sim E.|(v \land B)_{EW}| + E.c$ => indicates a mix of effects ?

Second term depends on the charge of the shower Greater weight of c when $|(\mathbf{v} \wedge \mathbf{B})_{\text{EW}}|$ decrease...

Charge excess mechanism?

$$\varepsilon_0 \sim \text{E.}|(\mathbf{v} \wedge \mathbf{B})_{\text{FW}}|.(1 + \text{c/}|(\mathbf{v} \wedge \mathbf{B})_{\text{FW}}|)$$

Analog to deflection with a magnetic dipole? => charged particles deviate more when |(v \ B)_{EW}| increase? => distances between the particles increase? => decreases coherence?

• Coherence effect?

Result of the calibration (without correction)

Attempt to estimate an energy resolution for radio

Monte Carlo => distribution in energy of the events in coincidence

- => random E
- => Random E_p in 3σ with $\sigma(E_p)/E_p$ fixed (25%, 30%,...)
- => Random E_0 in 3σ by varying $\sigma(E_0)/E_0$.
- Construction of the distribution $(E_p-E_0)/E_p$

Without correction: $\sigma(E_0)/E_0 = 20\%$

- => an underestimated performance?
- => More relevant RLDF will increase the correlation?
- => Principle of the correction doesn't depend on form of the RLDF

CODALEMA 2011... @ Nançay

Self-triggered antennas + multi-scale array (=> 1 km²)

The CODALEMA stand-alone station

•1 ADC board: 14 bits waveform. 1GS/s, $2.5 \mu s$, 1-250 MHz BW

•1 dating board : GPS timing

resolution: < 5 ns

•1 trigger board : 1st level of trigger @ galactic threshold

•1 PC board : 2nd level of trigger in embedded PC + Data management + 8GB flash memory

•Acq. rate: 25 evt/s Consumption: 20 W

Implementation of the trigger

1st trigger level (hard) based on analog filtering in the trigger board+ amplitude threshold =>Waveform digitization in ADC

Electronic crate (backplane supplying and linking boards)

Send to CPU

through PC embedded

Threshold update + Possible selections Max of amplitude

> Duration Recurrence

Standard deviation

2nd trigger (soft) based on waveform analysis => Data storage

Features of the detected events

Dominated by anthropic emissions

Intermittent emissions: eg. T=1.32 s, 1.4 s,... Filtering in the PC at level 2 (wave form analysis, recurrence transients...) => Reduce only storage, not the dead time

Daily recurring emissions (very annoying): @ 50 Hz & 100 Hz emissions affect most strongly the duty cycle=> Power lines + transformers identified as major problem!

How to mitigate these effects?

- Improving level 1 trigger card => identifying the recurrences before encoding? => understand the mechanism of emission and its features
- Trying to solve the emission at the source level =>modification of the power devices ?

Time between 2 successive events (s)

=> Observations of these RFI emissions by several experiences

=> Accurate source localizations expected using spherical reconstruction methods (Fixed source positions)
(Number of events)

The problem will be analogous for shower events

Except that in this case it is a single realization of the event parameters => Avoid a statistical estimate of the emitting center

Adjustments by planar wave fronts not relevant

- => Provides only arrival direction angles
 - No localization of point-like sources
- Increasing bias with the zenith angles

Simulation of source reconstructions using spherical waves

=> Not only time resolutions are in question

=> Also standard minimization methods are in question

+ results sensitive to

=> Algorithms (Simplex, Levenberg-Marquardt, Linear-search)

=> Initial values or the convergence

=> Detailed study of the minimization methods for the spherical reconstruction

=> Study of the objective function

(A. Rebai PhD thesis)

$$\chi^{2} = \frac{1}{2} \sum_{i=1}^{N} \left[\| \overrightarrow{r_{s}} - \overrightarrow{r_{i}} \|_{2}^{2} - (t_{s}^{*} - t_{i}^{*})^{2} \right]^{2}$$

Mathematical advanced analyzes

Study of Coercivity & Convexity (Hessian matrix)

 χ^2 defined positive => at least one minimum exists Local non-convexity

=> Existence of local minima

Not succeed to treat analytically the general case (3D array + source in sky) but some properties derived from particular cases

- Convex hull of the detector array unique solution for the sources included Degeneracies for external sources
- Critical points on a line (fired antenna barycentersource location)

Conclusion => In this approach, spherical reconstruction seems an ill-posed problem!

Best method to bypass this problem not yet found...

=> Try to avoid trapping in some local minima => Search for the minimum of the objective function using a grid calculation

Simulated shower events

- + need bias estimation: in progress
 - Try different approaches ?
 - Use advanced statistical theories => additional information (signal amplitudes + functional of the RLDF, $\chi^2_{Global} = \chi^2_{Time} + \chi^2_{Ampl}$)?

Work in progress...

Conclusion

Some earlier analyzes have been more deepened.... leading to possible refinements of the interpretations

=> The electric field at shower core seems a relevant observable => provides an usable energy estimation after calibration by another detector

This observable « radio » of the energy could include a mix of several emission process (Charge excess ?, Coherence ?)

Triggering is challenging in autonomous mode Recognition of emitting point seurces is also challenging

Spherical reconstruction seems an ill-posed problem

=> Need to work further and maybe to interact with other disciplines (applied mathematics, earth sciences, GPS technics...)

Thank you for your attention