Acoustic and Radio EeV Neutrino detection Activities – ARENA 2012

On polarization effects of the radio emission from extensive air showers

Institute of Space Science (ISS) Bucharest & Institut für Kernphysik/KIT Campus Nord P. G. Isar for the LOPES Collaboration

Motivation

Polarization characteristics of the radio signals are important in verifying the radio emission mechanisms. The geomagnetic effect seems to be the dominat contribution in the radio emission process [1], while depending on the geometry of the air shower and the position of the observer, the net charge excess of the shower may also contribute significantly [2].

LOPES-pol (40 - 80 MHz)

- \rightarrow Almost 3 yrs operation of dipole antenna configuration
- \rightarrow Trigger source provided by KASCADE-Grande at KIT
- \rightarrow Proof-of-Principle \rightarrow see LOPES talk by F.Schroeder

 \rightarrow R&D for large scale applications (LOFAR, Auger Observatory)

→ see LOPES-3D poster by D.Huber

Emission mechanisms

Data-sample:

- \rightarrow 383/710 triggered events \rightarrow N₁>10⁶, N_{ch}>10^{6.6}
- \rightarrow E_n>10¹⁷eV, θ <55°
- \rightarrow Radio reconstruction in each EW & NS channel (10 EW, 10 NS, 5 dipole) \rightarrow Observable: independent CC-beams

1. Geomagnetic emission

 \rightarrow deflection of charged particles in the magn. field \rightarrow Lorentz force - 1st order approximation, $|\vec{v} \times \vec{B}|$

2. Charge excess

- \rightarrow variation of negative charge excess lead to emission
- \rightarrow radial polarization, dependence on polarization angle
- \rightarrow EW & NS channels rotated to Φ_{m} =atan(P_{NS}/P_{FW})

 $(x'=xcos(\Phi_m)+ysin(\Phi_m), y'=-xsin(\Phi_m)+ycos(\Phi_m))$

Discussion

 $(\vec{v} - direction of shower axis, B'-field direction)$

 \rightarrow Linear polarization, dependence on azimuth & geomag. angle, compared to $|\vec{v} \times \vec{B}|$ -amplitude ratio

Generally similar features are observed when data are compared with the simplified geomagnetic model (Fig.1). However, in cases of specific geometry, deviations are visible (Fig.1 and Fig.2). Due to the specific LOPES-pol antenna configuration, a mean amplitude for the east-west and north-south polarization component, only is estimated, even valid not for the same observer position. In addition, to distinguish between the emission mechanisms, low signals with high accuracy for the individual polarization components have to be recorded, which is difficult with the simple inverse V-shape antennas and the high noise environment at KIT. References **Summary & Outlook**

- [1] D. Ardouin et al., ApP 31 (2009) \rightarrow Deviations from assumed pure geomagnetic contribution to the radio emission is seen when rotating polarization channels to the expected geomagnetic polarization angle.
- \rightarrow Full detector simulations are required to verify the theoretical predictions for polarization observations. \rightarrow see talk by T.Huege

[2] H. Schoorlemmer, NIMA 662 (2012) [3] B. Revenu, 32nd ICRC (2011) [4] D. Fraenkel, Auger GAP notes (2011)

www.kit.edu

[5] P.G. Isar et al., NIMA 604 (2009) \rightarrow Full polarization measurements are needed to validate the emission mechanisms. Work supported by Romanian funding contract: PN-II-RU-PD-2011-3-0062

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Contact: gina.isar@spacescience.ro