

Spectral index analysis of the data from the Auger Engineering Radio Array

Stefan Grebe (RU Nijmegen) on behalf of the Pierre Auger Collaboration

Outline

- Basic idea and introduction of spectral index
- Correction for noise
- Dependencies of spectral index on air shower geometry
- Outlook: sensitivity to composition
- Conclusions

AERA at the Pierre Auger Observatory

- Within dense part of the Auger surface detector array
- Overlooked by fluorescence telescopes (regular and high elevation)
- Energy threshold: ~10¹⁷ eV

Stefan Grebe (RU Nijmegen)

Basic idea

Geometric path difference

- smaller Δt
- shorter pulse
- higher frequencies
- larger ∆t
- longer pulse
- lower frequencies

Distance and zenith dependence

Stefan Grebe (RU Nijmegen)

ARENA 2012, Erlangen

Example AERA signal

ARENA 2012, Erlangen

Data processing

Studying the effect of noise

In each frequency bin: $M\left(\phi
ight)=\sqrt{T^{2}+B^{2}+2TB\cos\phi}$

ARENA 2012, Erlangen

Studying the effect of noise

In each frequency bin: $M\left(\phi\right)=\sqrt{T^{2}+B^{2}+2TB\cos\phi}$

ARENA 2012, Erlangen

Noise correction for data

$$M\left(\phi\right) = \sqrt{T^2 + B^2 + 2TB\cos\phi}$$

Phase between signal and background unknown

- Fit signal and background spectrum
- Determine amplitudes at $v_{min}\,$ and $v_{max}\,$ for M and B
- Calculate $M_{cor}(v_{min})$ and $M_{cor}(v_{max})$ with

$$M_{Cor} = \frac{1}{2\pi} \int_0^{2\pi} \sqrt{M^2 - \left(B \cdot \sin\phi\right)^2} \, d\phi$$

 Determine corrected spectral index s from M_{cor}(v_{min}) and M_{cor}(v_{max}) M: measured amplitudeB: background amplitudeT: true signal amplitude

Validation of noise correction

- Use frequency spectra of MGMR simulations
- Add simulated noise spectra with different spectral indices and random phases (here: S/N = 2)
- Determine spectral index s

Validation of uncertainties

- Determine for each corrected spectral index how many σ it is away from the true slope
- Uncertainty correct on percent level

Single AERA event

Stefan Grebe (RU Nijmegen)

Distance and zenith dependence of measured spectral index

Distance dependence

Fall-off at larger distances, at small distances not obvious

ARENA 2012, Erlangen

Comparison to MGMR simulations

Refractive index n =1

Realistic refractive index

AERA data and MGMR

Outlook: Composition

- MGMR simulations (no shower-to-shower fluctuations)
- Correct spectral index for distance, zenith and energy dependence

Example FD, SD, AERA coincidence

Stefan Grebe (RU Nijmegen)

Example FD, SD, AERA coincidence

Example FD, SD, AERA coincidence

Conclusion

- Determine spectral index of cosmic ray induced signals between 40 and 60 MHz
- Spectral index shows geometrical dependencies
- Composition sensitivity obtained in simulations
- Comparison of AERA and other Auger data ongoing

Backup slides

Slope of lateral spectral index distribution

- All events with more than 3 stations
- No signal-to-noise cut
- Linear fit function
- Most events have a negative slope

Average slope of LSF

Noise correction for different S/N

