

Prospects for a radio air-shower detector at South Pole

Sebastian Böser for the ARA and IceCube collaboration

ARENA 2012 Erlangen June 22nd 2012

Outline

Motivation

- IceCube / IceTop observatory
- first composition result
 - → radio air-shower extension

Experimental results

- antenna design
- setups at ARA
- environmental conditions
 - → noise!

Performance estimate

- simulation chain
- reconstruction
 - → first performance estimate

Outlook

Charged cosmic rays

ІсеТор

- sample shower on the ground
- e[±] ≥ 10 MeV

IceCube

- high-energy muon core
- µ[±] ≳ 300 GeV

→ 3D air-shower array

Combined

- $A_{eff} \cdot \Omega \approx 0.3 \text{ km}^2 \text{ sr}$
 - E_{prim} ≥ 300 TeV
 - \rightarrow 10¹⁰ showers per year
 - → 10⁷ with InIce signal

universitätbon

Composition with IceCube/IceTop

universitätbonn

Measuring composition

- shower size on ground (S125)
 - →e/m-component
- width of muon bundle in ice (K70)
 - →µ-component
- extract energy and In<A> from NN
 - → fit with template distritbution

Systematic uncertainties

- in-ice sensitivity (ice models, DOM efficiency)
- IceTop sensitivity (snow accumulation, environment)
- air-shower development (interaction models, atmosphere)

Motivation

Idea

• add a radio air-shower detector

Overlapping IceTop

- add complementary method
 - → reduce systematic uncertainties
 - energy resolution
 - directional resolution
- additional handle on X_{max}

Extending IceTop

- extend energy range
 →increase A_{eff} Ω
- air-shower veto
 - →increase v-sensitivity
- µ-veto
 - → sensitivity to UHE-γ

universit

Antenna design

Requirements

- high bandwidth
 - →optimize for 25-150MHz
- low dispersion
 - → triggering
- robustness
 - →buried in snow (size!)
 - →temperature -55°C

Fat Wire-Dipole (FWD) design wins

(Recent) exploratory setups

FROM RECEIVER

Noise results

ARA testbed

- full year of data
- minbias trigger
 - →very stable throughout year
 - → spectrum matches model

ARA-01 setup

- 3-of-4 trigger
- dominated by thermal noise

power density [µV²/Hz]

universität bonn

universitätbonn

Galactic Noise

Noise studies and permitivity

Spectral analysis

- falling galactic spectrum
 - → decrease in modulation amplitude with frequency
- sensitivity inversion (H-pol vs. V-pol)
 - ➔ inversion of galactic noise phase

Very good agreement with data!

from inversion point
→ best fit permittivity: 1.3

$$\epsilon_{snow} = 1 + 2.15 \frac{\rho_{snow}}{\rho_{ice}}$$

- →eff. snow density: 0.2 g/cm³
- rough agreement with measurements

Environmental conditions

ARA-01 setup

- signals not correlated with
 - → wind
 - → pressure
 - →temperature
- environment under control

Previous RICE test setups

- surface triggers correlated with wind speed
 - →hypothesis: discharge on structures (buildings, etc.)

Solar flare event

Feb 13th, 2011

RASTA - Radio Air-Shower Test Array

Proposed Setup

- 37 stations
- 2 antennas per station
- AERA-like DAQ
 - →interleaved sampling
 - 150MHz bandwidth

Goals

- develop technologies
 - →trigger (IceCube/IceTop)
 - → timing
 - →readout
- detect air-showers
 - → proof-of-principle
- start analysis
 - expected dataset (REAS3.0)
 - →50k radio triggers/year
 - → 15k IceTop coincident triggers/year

Simulation chain I

IceCube software system

- modular design
- integrates w/ existing tools
 - → combined RASTA/IceCube/ IceTop analysis

Radio event simulation

- REAS-3.0
- CoREAS (T. Huege)
- Semi-analytic model (Dave S.)

Simulation chain II

universitätbonn

IceCube software system

- modular design
- integrates w/ existing tools
 - → combined RASTA/IceCube/ IceTop analysis

Radio event simulation

- REAS-3.0
- CoREAS (T. Huege)
- Semi-analytic model (Dave S.)

Simulation chain III

Antenna simulation

NEC4 model

Noise simulation

- thermal noise @ -55°C
- galactic noise
 - → simplified model
 - $I = I_0 \cdot \exp(-\beta f)$

[Cane (MNR.astr.Soc, 1979 189, 465)] [Dulk (A&A, 2001, 365 294]

Simulation chain VI

DAQ simulation

- simplified chain
 - → 30dB amp,16bit ADC, 300MHz
 - → 2nd order bandpass 25-300MHz
- full ARA-01 chain
 - →implemented from data sheets

Feature extraction

fit gaussian to Hilbert transform
 →cut at 5σ RMS

universitätbonn

Reconstruction

Plane-wave reconstruction

- use Single Value Decomposition
 →analytic solution
- iterative method
- while (NHits > 6) and (ΔΨ < 0.005)
 - → refit w/ every hit excluded
 - \rightarrow calculate $\Delta \Psi$ to original fit
 - →exclude hit w/ largest ΔΨ (pull)

Core approximation

• simple weighted mean

Results

- densely spaced array
 - → simple method provides $\sigma_{\Psi} \sim O(1^{\circ})$ $\sigma_{R} \sim O(10m)$
 - → comparable to IceTop

Performance estimate

Trigger setup

- require 4 stations
- each has (at least one)
 5σ RMS signal

Energy threshold

- 50% efficiency value
 - →REAS3.0: ~35PeV
 - →CoREAS: ~100PeV
- need to simulate refractive index for dense array geometry close to X_{max}

Event rates

- decrease by (100/35)^{-2.7} ~ 0.06
 - → coincidence rate does not

Outlook

Radio detection of air showers at South Pole

- complements existing methods
- enhances the sensitivity
- decrease the systematic uncertainties

Exploratory studies @ ARA

- very good / well-understood noise conditions
- working antenna design

Radio Air-Shower Test Array

- threshold ~10^{16.5-17} eV
- promising simulation results
 - → proposal for Radio Air-Shower Test Array (RASTA)
 - twice declined by NSF

RASTA is ON ice (rather than ON THE ice)

ARA efforts continue

