

Cosmic-Ray Observation via Microwave Emission (CROME)

ARENA

Radomír Šmída for the CROME group

Outline

Talk about the CROME experiment:

Detector

Performance

Calibration

Measurement

Conclusion and outlook

Located in the center of the KASCADE-Grande (KG) array: Even if the KG experiment is in the phase, It still provides a trigger and reconstruction.

Energy range $10^{15.5} - 10^{18} \text{ eV}$

Two air showers reconstructed above 10¹⁷ eV and zenith angle < 40° in a fiducial area per day

12 inner stations provide the trigger

Reconstruction uncertainties: 0.8° for the arrival direction 6 m for the core position 20% for the energy

Overview of antennas

Antennas pointed vertically upward:1) to amplify a signal due to time compression2) to minimize distance to the shower maximum

C band antennas

Antenna #1 is pointed vertically upward, #2 (#3) tilted by 15° towards N (S)

Linearly polarized feedhorns: Single and dual High illumination efficiency and small spillover

Commercial parabolic reflectors: *C and Ku band D* = 335 cm, F = 119 cm

Specifications: 40 dBi gain, 1.6° HPBW

Readout chain I.

6 dB attenuator:

to match the signal strength with the DAQ electronics to suppress reflections due to an impedance mismatching

```
High pass filter (1.2–1.8 GHz):
to suppress airplane altimeter radars (@ 4.3 GHz)
```

Readout chain II.

Calibration of receivers

Microwave absorbing foam at room (293 K) and liquid nitrogen (77 K) temperature in a shielded vessel

Same electronics as in the experiment or with a spectrum analyzer

LNBs were measured before their installation

End-to-end calibration

Polarization

Current setup:

35 C band channels in total 8 are dual polarized receivers (i.e. with 2 LNBs) 18 LNBs with EW 17 LNBs with NS

First 2 cameras were rotated by 20° and 9° relatively to the NS projection of the local geomagnetic field before Jun, 2012.

Temperature stability

Integrated exposure

Period:

May 4, 2011 – installation of fast electronics May 21, 2012 – available data analysis In total **383 days** (9200 h)

Dead time:

510 h – KG: quality cuts and hw failures 150 h – CROME: test measurements, upgrades, failures It gives **72%** uptime in total.

Receivers:

18 between May 4, 2011 and April 4, 2012 27 between April 4, 2012 and May 21, 2012 HPBW = 1.6°

Integrated exposure: **50.2 deg² yr**

Propagation time

Event display

Response of electronics to a simulated isotropic signal

Conclusion and outlook

At conference UHECR 2012 (CERN, Feb 2012) two experiments, EASIER (Auger) and CROME announced the first measurements of microwave signal from air showers in the C band (3.4—4.2 GHz).

CROME has measured **20 events** within 356 days since May 2011.

New upgrades are under way: Dual polarized receivers Progress on L band antennas Wideband monitoring of radio background

We're working on an absolute calibration.

Running mode with an external trigger is limited by the lifetime of KASCADE-Grande during dismantling.

Measured events are extensively studied and Felix Werner will discus about it in the next talk.

Thank you

CROME group

CROMEX

S. Baur¹, M. Bertaina⁵, J. Blümer¹, A. Chiavassa⁵, R. Engel¹, A. Haungs¹,
T. Huege¹, K.-H. Kampert², H. Klages¹, M. Kleifges¹, O. Krömer¹, M. Ludwig¹,
S. Mathys², P. Neunteufel¹, J. Pekala⁴, J. Rautenberg², M. Riegel¹, M. Roth¹,
F. Salamida³, H. Schieler¹, J. Stasielak⁴, R. Šmída¹, M. Unger¹, M. Weber¹,
F. Werner¹, H. Wilczyński⁴, J. Wochele¹

¹Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
 ²Bergische Universität Wuppertal, Wuppertal, Germany
 ³Università dell'Aquila and INFN, L'Aquila, Italy
 ⁴Institute of Nuclear Physics PAN, Krakow, Poland
 ⁵Università di Torino and Sezione INFN, Torino, Italy