The cosmic triad

Cosmic rays, gamma-rays and neutrinos

Markus Ahlers

University of Wisconsin-Madison & WIPAC

ARENA Workshop 2012

June 22, Erlangen

Multi-messenger paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- Flux predictions are based on CR and γ-ray observation.
- Status summary:
 - X No "surprises" yet.
 - Sensitivity has reached the level of "serious" models.
- Implications of neutrino limits on UHE CR sources:
 - Part I: Direct vs. indirect *v*-limits

Part II: Cosmogenic *v*'s

Multi-messenger paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- Flux predictions are based on CR and γ-ray observation.
- Status summary:
 - X No "surprises" yet.
 - Sensitivity has reached the level of "serious" models.
- Implications of neutrino limits on UHE CR sources:
 - **Part I:** Direct vs. indirect *v*-limits

Part II: Cosmogenic *v*'s

Multi-messenger paradigm

- Neutrino production is closely related to the production of cosmic rays (CRs) and γ-rays.
- Flux predictions are based on CR and γ-ray observation.
- Status summary:
 - X No "surprises" yet.
 - Sensitivity has reached the level of "serious" models.
- → Implications of neutrino limits on UHE CR sources:
 - Part I: Direct vs. indirect *v*-limits

Part II: Cosmogenic ν 's

Cherenkov radiation in transparent media (glaciers, lakes, oceans,...).

Cherenkov radiation in transparent media (glaciers, lakes, oceans,...).

Coherent radio Cherenkov emission (Askaryan effect). Observation in-situ, balloons or satellites.

Coherent radio Cherenkov emission (Askaryan effect). Observation from lunar regolith.

Markus Ahlers (UW-Madison)
-----------------	-------------

Acoustic detection?

Markus Ahlers	(UW-Madison)
---------------	--------------

Deeply penetrating quasi-horizontal showers. Observation by CR surface arrays.

Markus Ahlers (UW-Madison)
-----------------	-------------

Observation by CR surface arrays and/or fluorescence detectors/satellites.

Markus Ahlers (UW-Madison)
-----------------	-------------

The cosmic triad

Earth-skimming tau neutrinos.

Markus Ahlers (L	JW-Madison)
------------------	-------------

Diffuse neutrino limits

Neutrino flux predictions

• pion production in CR interactions with ambient radiation

$$\pi^+ o \mu^+
u_\mu o e^+
u_e ar
u_\mu
u_\mu \ \pi^0 o \gamma\gamma$$

inelasticity:

$$E_{
u} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}}/N_{\pi^0}$$

• pion fraction:

$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

Neutrino flux predictions

• pion production in CR interactions with ambient radiation

$$\pi^+ \to \mu^+ \nu_\mu \to e^+ \nu_e \bar{\nu}_\mu \nu_\mu$$
$$\pi^0 \to \gamma \gamma$$

inelasticity:

$$E_{
u} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}}/N_{\pi^0}$$

• pion fraction:

$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

 $(E_{
u}^2 J_{
u} \sim \text{energy density } \omega)$

Neutrino flux predictions

• pion production in CR interactions with ambient radiation

$$\pi^+ \to \mu^+ \nu_\mu \to e^+ \nu_e \bar{\nu}_\mu \nu_\mu$$
$$\pi^0 \to \gamma \gamma$$

inelasticity:

$$E_{
u} \simeq E_{\gamma}/2 \simeq \kappa E_p/4$$

relative multiplicity:

$$K = N_{\pi^{\pm}} / N_{\pi^{0}}$$

• pion fraction:

$$f_{\pi} \simeq 1 - e^{-\kappa \tau}$$

$$\begin{split} \omega_{\text{Fermi}} &\simeq 6 \times 10^{-7} \text{ eV/cm}^3 \\ \omega_{\text{UHECR}} &\simeq 1 \times 10^{-7} \text{ eV/cm}^3 \\ \omega_{\text{IC40}} &\lesssim 1 \times 10^{-7} \text{ eV/cm}^3 \end{split}$$

Gamma-ray cascades

- CMB interactions (solid lines)
 dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\text{CMB}} \rightarrow e^+ + e^-$
- PP in IR/optical background (red dashed line) determines the "edge" of the spectrum.
- this calculation: Franceschini *et al.* '08

Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution.

→ "cascade bound" for neutrinos [Berezinsky&Smirnov'75]

Gamma-ray cascades

- CMB interactions (solid lines) dominate in casade:
 - inverse Compton scattering (ICS) $e^{\pm} + \gamma_{\text{CMB}} \rightarrow e^{\pm} + \gamma$
 - pair production (PP) $\gamma + \gamma_{\rm CMB} \rightarrow e^+ + e^-$
- PP in IR/optical background (red dashed line) determines the "edge" of the spectrum.
- this calculation: Franceschini *et al.* '08

Rapid cascade interactions produce universal GeV-TeV emission (almost) independent of injection spectrum and source distribution.

→ "cascade bound" for neutrinos [Berezinsky&Smirnov'75]

Cosmic ray spectrum

Cosmic ray spectrum

Markus Ahlers (UW-Madison)

Diffuse neutrino limits

Diffuse neutrino limits

Candidate sources

- CR acceleration is (most likely) a continuous process.
- → Accelerators need to confine the particle by magnetic fields.
 - $E_{\rm max} \sim {\rm size} \times {\rm field \ strength}$

Hillas plot

Conceivable neutrino fluxes

• Typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_p \simeq \frac{1}{40} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4\omega} \simeq 4 \text{PeV} \Gamma^2 \left(\frac{\text{eV}}{\omega_{\text{eV}}}\right)$$

- cosmogenic neutrinos ($\Gamma = 1 / E_{\gamma} \simeq 10 \text{ meV}$): $E_{\nu} \simeq 1 \text{ EeV}$ [Berezinsky&Zatsepin'69]
- prompt neutrino emission in GRBs ($\Gamma \simeq 300 / E_{\gamma} \simeq 1 \text{ MeV}$): $E_{\nu} \simeq 1 \text{ PeV}$ [Waxman&Bahcall'97]
- optical afterglow emission in GRBs ($\Gamma \simeq 10 / E_{\gamma} \simeq 1 \text{ eV}$): $E_{\nu} \simeq 1 \text{ EeV}$ [Waxman&Bahcall'00;Murase&Nagataki'06;Murase'07]
- external radiation in line-emitting blazars ($\Gamma \simeq 10$ / $E_{\gamma} \simeq 0.1$ MeV): $E_{\nu} \simeq 10$ TeV [Atoyan&Dermer'01]
- UV emission from AGN disk ($\Gamma \simeq 1 / E_{\gamma} \simeq 10 \text{ eV}$): $E_{\nu} \simeq 1 \text{ PeV}$ [Stecker/Done/Salamon/Sommers'91]
- internal synchrotron emission in AGN jets ($\Gamma \simeq 10 / E_{\gamma} \simeq 1 \text{ meV}$): $E_{\nu} \simeq 1 \text{ ZeV}$ [Mannheim/Stanev/Biermann'92]

• . . .

- Neutrinos form *pp* interactions $E_{\nu} \lesssim 0.05 E_p$ can dominate in dense environments:
 - precursor neutrinos of GRBs: $E_{\nu} \lesssim 100 \text{ TeV}$ [Razzaque/Meszaros/Waxman'03]
 - starburst galaxies: [Loeb&Waxman'06]

 $E_{\nu} \lesssim 100 \text{ TeV}$

^{• . . .}

Conceivable neutrino fluxes

• Typical neutrino energy from $p\gamma$ interactions (in boosted environments):

$$E_p \simeq \frac{1}{40} \Gamma^2 \frac{m_{\Delta}^2 - m_p^2}{4\omega} \simeq 4 \text{PeV} \, \Gamma^2 \left(\frac{\text{eV}}{\omega_{\text{eV}}}\right)$$

- → cosmogenic neutrinos ($\Gamma = 1 / E_{\gamma} \simeq 10 \text{ meV}$): [Berezinsky&Zatsepin'69] $E_{\nu} \simeq 1 \text{ EeV}$
- → prompt neutrino emission in GRBs ($\Gamma \simeq 300 / E_{\gamma} \simeq 1 \text{ MeV}$): $E_{\nu} \simeq 1 \text{ PeV}$ [Waxman&Bahcall'97]
 - optical afterglow emission in GRBs ($\Gamma \simeq 10 / E_{\gamma} \simeq 1 \text{ eV}$): $E_{\nu} \simeq 1 \text{ EeV}$ [Waxman&Bahcall'00;Murase&Nagataki'06;Murase'07]
 - external radiation in line-emitting blazars ($\Gamma \simeq 10$ / $E_{\gamma} \simeq 0.1$ MeV): $E_{\nu} \simeq 10$ TeV [Atoyan&Dermer'01]
 - UV emission from AGN disk ($\Gamma \simeq 1 / E_{\gamma} \simeq 10 \text{ eV}$): $E_{\nu} \simeq 1 \text{ PeV}$ [Stecker/Done/Salamon/Sommers'91]
 - *internal synchrotron emission in AGN jets* ($\Gamma \simeq 10 / E_{\gamma} \simeq 1 \text{ meV}$): $E_{\nu} \simeq 1 \text{ ZeV}$ [Mannheim/Stanev/Biermann'92]

• . . .

- Neutrinos form pp interactions $E_{\nu} \lesssim 0.05 E_p$ can dominate in dense environments:
 - precursor neutrinos of GRBs: [Razzaque/Meszaros/Waxman'03]
 - starburst galaxies: [Loeb&Waxman'06]

• . . .

IceCube search for burst neutrinos

IceCube search for burst neutrinos

IC40+59 results

- Limits on neutrino emission coincident with 215 (85) northern (southern) sky GRBs between April 2008 and May 2010 ("IC40+59"). [Abbasi et al.'11,'12]
- Model-dependent limit for prompt emission model.
- → Model-independent limit for general neutrino coincidences (no spectrum assumed) with sliding time window ±∆t from burst.
- Stacked flux below "benchmark" prediction of burst neutrino emission by a factor 3-4. [Guetta *et al.*'04]
- IceCube limit below benchmark diffuse models normalized to UHE CR data. [Waxman&Bahcall'03; Rachen et al.'98]

L_{γ} normalization

Markus Ahlers (UW-Madison)

June 22, 2012

Cosmogenic neutrinos

- "Guaranteed" neutrino production from UHE CR propagation in cosmic radiation background. [Greisen&Zatsepin'66;Kuzmin'66;Berezinsky&Zatsepin'70]
- → resonant proton interaction $p\gamma \rightarrow \Delta \rightarrow n\pi^+$ with CMB: $E_{CR} < E_{GZK} \simeq 40 \text{EeV}$
- → peak neutrino contribution at $E_{\nu} \simeq 1 \text{EeV}$

Markus Ahlers (UW-Madison)

UHE CR observation

Auger composition

UHE CR observation

HiRes composition

Markus Ahlers (UW-Madison)

Galactic to extragalactic crossover

"dip-transition" vs. "ankle-transition"

Diffuse CR fluxes

- spatially homogeneous and isotropic distribution of sources
- Boltzmann equation of comoving number density $(Y = n/(1 + z)^3)$:

$$\dot{Y}_i = \partial_E(HEY_i) + \partial_E(b_iY_i) - \Gamma_i \, Y_i + \sum_j \int \mathrm{d}E_j \, \gamma_{ji}Y_j + \mathcal{L}_i \, ,$$

- *H* : Hubble rate b_i : continuous energy loss γ_{ji} (Γ_i) : differential (total) interaction rate
- power-law proton emission rate:

$$\mathcal{L}_p(0,E) \propto \left(E/E_0\right)^{-\gamma} \exp(-E/E_{\max}) \exp(-E_{\min}/E)$$

• redshift evolution of source emission or distribution:

$$\mathcal{L}_p(z, E) = \mathcal{L}_p(0, E)(1+z)^n \Theta(z_{\max} - z)\Theta(z - z_{\min})$$

Proton-dominance in UHE CRs?

- GoF based on Hires-I/II data $(\Delta E/E \simeq 25\%)$
- fixed: $E_{\text{max}} = 10^{21} \text{ eV}$ $z_{\text{min}} = 0 / z_{\text{max}} = 2$
- priors: $2.1 \le \gamma \le 2.9$ $2 \le n \le 6$ $\omega_{\text{cas}} \le \omega_{\text{Fermi}}$
- range of spectra: 99% C.L.
- increasing crossover energy from 2nd knee to ankle

Cosmogenic neutrinos from CR protons

- Cascade bound, ω_{cas} ≤ ω_{Fermi}, reduces the cosmogenic neutrino flux (dotted green line) by a factor 2-4.
- Range of cosmogenic neutrino fluxes (dashed green line) increase along with the cross-over energy and lies within reach of present & future neutrino observatories.

Cosmogenic neutrinos from CR protons

- Cascade bound, ω_{cas} ≤ ω_{Fermi}, reduces the cosmogenic neutrino flux (dotted green line) by a factor 2-4.
- Range of cosmogenic neutrino fluxes (dashed green line) increase along with the cross-over energy and lies within reach of present & future neutrino observatories.

Cosmogenic neutrinos from CR protons

- Cascade bound, ω_{cas} ≤ ω_{Fermi}, reduces the cosmogenic neutrino flux (dotted green line) by a factor 2-4.
- Range of cosmogenic neutrino fluxes (dashed green line) increase along with the cross-over energy and lies within reach of present & future neutrino observatories.

Cosmogenic neutrinos

TABLE II: Expected numbers of events $N_{\rm V}$ from several UHE neutrino models, comparing published values from the 2008 ANITA-II flight with predicted events for a three-year exposure for ARA-37.

Model & references N _v :	ANITA-II,	ARA,
	(2008 flight)	3 years
Baseline cosmogenic models:		
Protheroe & Johnson 1996 [27]	0.6	59
Engel, Seckel, Stanev 2001 [28]	0.33	47
Kotera, Allard, & Olinto 2010 [29]	0.5	59
Strong source evolution models:		
Engel, Seckel, Stanev 2001 [28]	1.0	148
Kalashev et al. 2002 [30]	5.8	146
Barger, Huber, & Marfatia 2006 [32]	3.5	154
Yuksel & Kistler 2007 [33]	1.7	221
Mixed-Iron-Composition:		
Ave et al. 2005 [34]	0.01	6.6
Stanev 2008 [35]	0.0002	1.5
Kotera, Allard, & Olinto 2010 [29] upper	0.08	11.3
Kotera, Allard, & Olinto 2010 [29] lower	0.005	4.1
Models constrained by Fermi cascade bound:		
Ahlers et al. 2010 [36]	0.09	20.7
Waxman-Bahcall (WB) fluxes:		
WB 1999, evolved sources [37]	1.5	76
WB 1999, standard [37]	0.5	27

[ARA'11]

Best-fit range of GZK neutrino predictions (~two orders of magnitude!) cover various evolution models and source compositions.

Composition dependence of UHE CR sources

- UHE CR emission toy-model:
 - 100% proton: $n = 5 \& z_{max} = 2 \& \gamma = 2.3 \& E_{max} = 10^{20.5} eV$
 - 100% iron: n = 0 & $z_{max} = 2$ & $\gamma = 2.3$ & $E_{max} = 26 \times 10^{20.5}$ eV
- Diffuse spectra of cosmogenic γ-rays (dashed lines) and neutrinos (dotted lines) vastly different. [MA&Salvado'11]

Propagation of CR nuclei

 fast photo-disintegration of nuclei (mass number
 A = N + Z) beyond the giant dipole resonance (GDR):

$$\lambda_{
m GDR} \sim rac{4}{A} \;
m Mpc$$

- strong influence of mass composition at very high energy
- → BUT: conserves total number of nucleons with nucleon energy E/A!
- Neutrino production (mostly) via γ-nucleon interaction!

Approximate* scaling law of energy densities

* disclaimer:

- source composition Q_i with mass number A_i and index γ_i
- applies only to models with large rigidity cutoff $E_{\max,i} \gg A_i \times E_{\text{GZK}}$ previous examples ($z_{\max} = 2 \& \gamma = 2.3$):
- 100% proton: n = 5 & $E_{\text{max}} = 10^{20.5}$ eV $\omega_{\gamma} \propto 1 \times 12$
- 100% iron: n = 0 & $E_{\text{max}} = 26 \times 10^{20.5}$ eV $\omega_{\gamma} \propto 0.27 \times 0.5$
- **v** relative difference: ~ 82 .

Nucleon Cascade

- Observed composition is result of source composition and nucleon cascades.
- Backtracking conserves energy per nucleon.
- Bethe-Heitler (BH) loss breaks this approximation

 $b_{A,\mathrm{BH}}(E)\simeq Z^2 imes b_{p,\mathrm{BH}}(E/A)$

- Minimal cosmogenic neutrino production from fit to Auger data assuming:
 - maximal backtracking
 - minimal BH loss
 - → minimal nucleon emissivity

Nucleon Cascade

- Observed composition is result of source composition and nucleon cascades.
- Backtracking conserves energy per nucleon.
- Bethe-Heitler (BH) loss breaks this approximation

 $b_{A,\mathrm{BH}}(E)\simeq Z^2 imes b_{p,\mathrm{BH}}(E/A)$

- Minimal cosmogenic neutrino production from fit to Auger data assuming:
 - maximal backtracking
 - minimal BH loss
 - → minimal nucleon emissivity

Guaranteed cosmogenic neutrinos

→ nucleon spectrum for observed mass number A_{obs}:

 $J_N^{\min}(E_N) = A_{\rm obs}^2 J_{\rm CR}(A_{\rm obs}E_N)$

- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37
- → generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\rm CR}(A_i E_N)$$

Guaranteed cosmogenic neutrinos

→ nucleon spectrum for observed mass number A_{obs}:

 $J_N^{\min}(E_N) = A_{\rm obs}^2 J_{\rm CR}(A_{\rm obs}E_N)$

- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37
- → generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\rm CR}(A_i E_N)$$

Guaranteed cosmogenic neutrinos

→ nucleon spectrum for observed mass number A_{obs}:

 $J_N^{\min}(E_N) = A_{\rm obs}^2 J_{\rm CR}(A_{\rm obs}E_N)$

- dependence on cosmic evolution of sources:
 - no evolution (dotted)
 - star-formation rate (solid)
- ultimate test of UHE CR proton models with ARA-37
- → generalization to arbitrary composition via

$$J_N^{\min}(E_N) = \sum_i f_i(A_i E_N) A_i^2 J_{\rm CR}(A_i E_N)$$

Summary

- Neutrino (non-)observatories have reached a sensitivity to constrain multi-messenger signals – γ-rays and UHE CRs – with "minimal" assumptions.
- **X** No surprises yet: very high energy neutrino sky is dark.
- → Neutrino "diagnostics" of UHE CR models; most effectively at PeV energies
- Present neutrino limits challenge GRBs as the sources of UHE CRs; standard ("benchmark") diffuse GRB neutrino predictions are ruled out by the IC40+59 results.
- IceCube also in reach of EeV cosmogenic neutrino flux predictions from proton-dominated CR models.
- Definite test of proton-dominated CR models with future extensions ARA or ARIANNA.

Summary

- Neutrino (non-)observatories have reached a sensitivity to constrain multi-messenger signals – γ-rays and UHE CRs – with "minimal" assumptions.
- **X** No surprises yet: very high energy neutrino sky is dark.
- → Neutrino "diagnostics" of UHE CR models; most effectively at PeV energies
- Present neutrino limits challenge GRBs as the sources of UHE CRs; standard ("benchmark") diffuse GRB neutrino predictions are ruled out by the IC40+59 results.
- IceCube also in reach of EeV cosmogenic neutrino flux predictions from proton-dominated CR models.
- Definite test of proton-dominated CR models with future extensions ARA or ARIANNA.

Thank you for your attention!

Appendix

Gamma-ray bursts (GRBs)

Gamma-ray bursts & UHE CRs

- possible sources of UHE CRs:
 - ✓ comparable energy density: 10^{53} erg t_{Hubble}^{-3} day⁻¹ $\simeq 10^{44}$ erg Mpc⁻³ yr⁻¹
 - fulfill necessary conditions on time-scales (dynamical, cooling, acceleration) to reach ultra-high energies
 [Hillas'84]
 - acceleration of UHE CRs possible, e.g., in internal or external reverse shocks [Vietri'95;Waxman'95]
- → smoking gun signal: neutrino production
 - Neutrino emission of GRBs is one of the best-tested models: [IceCube, Nature'12]
 - \checkmark cosmological sources ("one per day and 4π ")
 - ✓ wealth of data from Swift and Fermi
 - ✓ good information on timing and location (→ background reduction)

GRB neutrino emission

- . Neutrino production at various stages of GRB, e.g.
 - \rightarrow precursor pp and p γ interactions in stellar envelope; also possible for "failed" GRBs
 - **burst** $p\gamma$ interactions in internal shocks \rightarrow
 - **afterglow** $p\gamma$ interactions in reverse external shocks \rightarrow

[Razzague.Meszaros&Waxman'03]

[Waxman&Bahcall'97]

[Waxman&Bahcall'00;Murase&Nagataki'06;Murase'07]

[Meszaros'01]

Burst neutrino emission

neutrinos from meson production, e.g.

 $\pi^+ o \mu^+
u_\mu o e^+
u_e ar
u_\mu
u_\mu$

- spectra shaped by burst and proton spectrum and synchrotron loss of pions and muons before decay
 [Waxman & Bahcall'97]
- for typical burst spectra this c s a "plateau" of neutrinos

 $100 \,\mathrm{TeV} \lesssim E_{\nu} \lesssim 10 \,\mathrm{PeV}$

Different models for absolut normalization:

Burst neutrino emission

neutrinos from meson production, e.g.

 $\pi^+ o \mu^+
u_\mu o e^+
u_e ar
u_\mu
u_\mu$

- spectra shaped by burst and proton spectrum and synchrotron loss of pions and muons before decay
 [Waxman & Bahcall'97]
- for typical burst spectra this c s a "plateau" of neutrinos

 $100 \,\mathrm{TeV} \lesssim E_{\nu} \lesssim 10 \,\mathrm{PeV}$

Different models for absolut normalization:

Neutrino production from $p\gamma$

internal photon spectrum inferred from observed luminosity (L_γ)

$$\frac{L_{\gamma}}{4\pi} \underbrace{\frac{1}{r_{\rm dis}^2 \Gamma^2}}_{\text{inferred/modeled}} \simeq \int \mathrm{d}\epsilon \epsilon n_{\gamma}(\epsilon)$$

- opacity of $p\gamma$ collision ($\epsilon_{\min}=(m_{\Delta}^2-m_p^2)/4E_p$)

$$\tau_{p\gamma}(E_p) = \frac{t_{\rm dyn}}{t_{p\gamma}(E_p)} \simeq t_{\rm dyn} \underbrace{\left(\frac{\pi}{2} \frac{\Gamma_{\Delta} \sigma_0 m_{\Delta}^3}{m_{\Delta}^2 - m_p^2}\right)}_{0.04} \frac{m_p^2}{E_p^2} \int\limits_{\epsilon_{\rm min}} \frac{d\epsilon}{\epsilon^2} n_{\gamma}(\epsilon)$$

• pion to proton spectrum with inelasticity $\kappa \simeq 0.2$

$$E_{\pi}^2 J_{\pi}(E_{\pi}) \simeq \underbrace{\left(1 - e^{-\kappa \tau_{p\gamma}(E_p)}
ight)}_{f_{\pi}(E_p)} E_p^2 J_p(E_p)$$

final neutrino spectra after meson/muon cooling in magnetic fields

GRB flux normalization

• Neutrino predictions depend on model and normalization:

A GRB as the source of UHE CRs?

- → calculate the pion energy fraction f_{π} in $p\gamma$ interactions
- normalize to UHE CRs

A' GRB as the source of UHE CR neutrons?

- \rightarrow independent of f_{π}
- → normalize to UHE CRs [Rachen & Mészáros'98; MA, Gonzalez-Garcia & Halzen'11]

B GRB as one source of (UHE) CRs?

use bolometric energy arguments about internal energy densities U in shock

$$U_B = \epsilon_B U_{\text{tot}}$$
 $U_e = \epsilon_e U_{\text{tot}}$ $U_p = \epsilon_p U_{\text{tot}}$

- → by construction, $\epsilon_B + \epsilon_e + \epsilon_p \lesssim 1$, but otherwise **not well constrained**
- → calculate the pion energy fraction f_{π} in $p\gamma$ interactions
- → normalize to CRs in individual bursts, $U_p = (\epsilon_p / \epsilon_e) U_{\text{burst}}$ [Guetta *et al.*'04;He *et al.*'12]

[Waxman & Bahcall'97]

GRB model-dependence

- The parameters Γ_i, ε_p and ε_e are in general fudge-factors; some indirect observation by GRB afterglow emission.
- Model hierarchy: "A → B" or "not B → not A"
- · Heavy nuclei acceleration in internal shocks?
 - issues for model A; large internal shock radii and/or large Lorentz factors needed to reach UHEs [Wang,Razzaque&Meszaros'08;Murase et al.'08]
 - generally lower neutrino luminosity due to limited photon density
- Diffuse limits have also dependence on the stochasticity of the tested GRB
 ensemble.
 [Baerwald,Hümmer&Winter'11]
- Revised calculations of pion fraction f_{π} produce *lower values* than the standard parametrization [Li'11; Baerwald,Hümmer&Winter'11;He *et al.*'12]
- CR production via neutron emission (model A') relates neutrinos and CR protons independent of the absolute value f_π; scenario largely ruled out by IC40+59.

• fit of spectrum to HiRes data above ankle: $\mathcal{L}(0, E) \propto E^{-\gamma}/(1 + (E_{p,b}/E))e^{-E/E_{max}}$

- "SFR" : evolution following star formation rate
- "strong" : $\mathcal{L}_{strong}(z, E) = (1 + z)^{1.4} \mathcal{L}_{SFR}(z, E)$

[Hopkins&Beacom'06;Yuksel et al.'08]

[Yuksel&Kistler'06]

- model A' hypothesis: UHE CRs production in GRBs via neutron emission
- scan over luminosity range $0.1 < (\varepsilon_B/\varepsilon_e)L_{\gamma,52} < 10$
- fit requires softer injection spectra

- model A' hypothesis: UHE CRs production in GRBs via neutron emission
- scan over luminosity range $0.1 < (\varepsilon_B/\varepsilon_e)L_{\gamma,52} < 10$
- fit requires softer injection spectra

- model A' hypothesis: UHE CRs production in GRBs via neutron emission
- scan over luminosity range 0.1 < (ε_B/ε_e)L_{γ,52} < 10
- ➔ fit requires softer injection spectra

- model A' hypothesis: UHE CRs production in GRBs via neutron emission
- scan over luminosity range $0.1 < (\varepsilon_B/\varepsilon_e)L_{\gamma,52} < 10$
- fit requires softer injection spectra