

Top Quark Properties at LHC with ATLAS and CMS experiments

Hongbo Liao

LPC Clermont-Ferrand

On behalf of the ATLAS and CMS Collaborations

Heavy Quarks and Leptons 2012 June 11-15 Prague

Top Quark Properties Outline

The top physics results in ATLAS and CMS presented in this talk:

- Top Quark Mass
- Top Quark Mass difference
- Top Quark Charge
- Branching Ratio
- FCNC
- W-Boson Polarization
- Charge Asymmetry
- Spin Correlation

Top Quark Mass: lepton+jets CMS-PAS-TOP-11-015 ATLAS: arXiv.1203.5755, submitted to EPJC

ATLASTemplates methods have been used to determine m1D template:2D template:

Based on the variable $R_{32} = m_{top}/m_W$ Determine m_{top} and a global jet energy scale factor (JSF) simultaneously

CMS Kinematic fit + **Ideogram method** is used to determine m_{top} in μ +jets

Kinematic fit exploits the compatibility with tt hypothesis

Top Quark Mass: dilepton

KINb method (kinematic equation describing tr system):

- Solved many times per event, for all lepton+jets combination
- jet p_T , E_T^{miss} and p_z^{tt} are varied independently according to their resolutions
- Most probable combination is chosen

Unbined likelihood fit of the m_{KINb} using templates at different masses

Measurement dominated by Jet Energy Scale (JES) and flavor-JES

Top Quark Mass: full hadronic

- > m_{top} extracted with a template method
- > Jet assignment done by a minimal χ^2 finding
 - More than 6 jets involved in the analysis (2 b-tagged jets)
 - Lower χ^2 is kept ($\chi^2 < 8$)

> Main background: Multi-jet sample, estimated by data-driven method

Top Quark Mass: Combination

LHC combination is ongoing ...

The ATLAS hadronic top mass measurement has not been included yet

Top Quark Mass from Cross Section

- \succ Extraction of the $m^{top}_{\ pole}$ from the measurement of $\sigma_{t\bar{t}}$
- > Different theoretical approaches to calculate $\sigma_{\tilde{t}t}$ with higher NLO corrections

Top Quark Mass difference

CMS: arXiv.1204.2807 Submitted to JHEP

 $\mathbf{m}_{\mathrm{top}} = \mathbf{m}_{\mathrm{anti-top}}$?

- ♦ Sample divided in *l*+*jets* and *l*-*jets*
- Top mass is reconstructed using hadronic side
- Kinematic fit to perform jet association:
- Final measurement from ideogram method:
 - Likelihood for l⁺ l⁻ separately

$$\Delta m_{top} = (-0.44 \pm 0.46_{stat} \pm 0.27_{syst}) GeV$$

Many of the main systematic uncertainties for m_{top} are cancelled in this analysis

In agreement with the consequence of CPT invariance

Top Quark Charge

- \Rightarrow Top quark charge Q = +2/3 by SM prediction and Q = -4/3 in Exotic scenario
- \diamond The measurement of top quark charge is based on its decay products:
 - : Charge determined with lepton charge W
 - *b-jet* : Charge is not directly measured:

 $\langle \mathbf{Q}_{\mathrm{comb}} \rangle = \langle \mathbf{Q}_{\mathrm{biet}} \cdot \mathbf{Q}_{\mathrm{lep}} \rangle$

Tracks charge weighting technique Semi-leptonic b hadron decay

Exotic scenario is excluded with more than 5σ

Measurement of $R_b \equiv Br(t \rightarrow wb)/Br(t \rightarrow wq)$ CMS-PAS-TOP-11-029

- Standard model predicts nearly all tops decay to Wb as V_{tb}≈0.999.
- Can also measure this by measuring rate of tagged b jets in ttbar events
 - Measure rate of 2,3 jet events with 0,1,2,3 tagged b-jets
 - Fit model with R_b as free parameter to data
 - Understanding of b-tagging efficiency leading source of systematic uncertainty

 $R_b=0.98 \pm 0.04 \text{ (stat.+syst)} \rightarrow R_b>85\% \text{ at }95\% \text{ C.L. (if } R_b \leq 1)$

Consistent with SM prediction

At 95% C.L.

FCNC In Single Top

- Standard model prohibits flavor changing neutral currents.
- Test this by looking for processes with *tug* and *tcg* couplings in single top
- Use 10 variable Neural Network discriminant

Variable	Significance (σ)	07	4000 _[°	
p_{T}^{W}	57	s/0.	3500	AILAS	$\int L dt = 2.05 \text{ fb}^{-1}$,	\s = 7 TeV
$\Delta R(b-jet,lep)$	28	ent	2000		• data	-
Lepton charge	22	<u>л</u>	3000		— FCNC (σ=100 pb)	2.1 fb ⁻¹
$m_{\rm top}$	20		2500		single top	- hanne
m_{b-jet}	15		2000		W+jets	
$\eta_{b ext{-jet}}$	12		1 5 0 0		Wbb,Wcc,Wc	-
$\Delta \phi(W,b\text{-jet})$	11		1500		///, uncertainty	╶╌╌┚┊
$p_{\mathrm{T}}^{\mathrm{lep}}$	12		1000			
$p_{\mathrm{T}}^{b-\mathrm{jet}}$	6.5		500			
$\cos \theta^*$	5.7		500			
$\Delta R(W,b-jet)$	5.0		0	1 -0.8 -0.6 -0	.4 -0.2 0 0.2 0.4	0.6 0.8 1
						NN output

BR(t → ug) < 5.7×10⁻⁵ $BR(t \rightarrow cg) < 2.7 \times 10^{-4}$

FCNC In tt

look for FCNC coupling tqZ in tt decays

➢ One t-->wb and another t-->Zq

> Three lepton final state with small background (mainly diboson)

W boson polarization

- Investigate V-A structure of Wtb vertex by examining polarization of W from top decay
- Polarization of W by NNLO calculation of SM :

 F_0

 F_L

 F_{R}

 $\mathbf{F}_0 = (68.5 \pm 0.5)\%, \ \mathbf{F}_L = (31.1 \pm 0.5)\%, \ \mathbf{F}_R = (0.17 \pm 0.01)\%$

Measure opening angle $cos(\theta^*)$ between I and b in W rest-frame

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) F_0 + \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_R.$$

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta^*} = \frac{3}{4} \left(1 - \cos^2\theta^*\right) F_0 + \frac{3}{8} \left(1 - \cos\theta^*\right)^2 F_L + \frac{3}{8} \left(1 + \cos\theta^*\right)^2 F_R.$$

$$\frac{1}{\sigma} \frac{1}{\sigma} \frac{1}{\sigma$$

Good agreement with SM prediction

W boson polarization : Anomalous WTB

Constraints on possible new physics

New physics can be parameterized in terms of an effective Lagrangian

$$\mathcal{L}_{Wtb} = -\frac{g}{\sqrt{2}}\bar{b}\gamma^{\mu} \left(V_{\rm L}P_{\rm L} + V_{\rm R}P_{\rm R}\right)t W_{\mu}^{-} - \frac{g}{\sqrt{2}}\bar{b}\frac{i\sigma^{\mu\nu}q_{\nu}}{M_{W}} \left(g_{\rm L}P_{\rm L} + g_{\rm R}P_{\rm R}\right)t W_{\mu}^{-} + \text{h.c.}$$

Allowed region in $g_R vs g_L$ (assuming $V_L=1$ and $V_R=0$)

Improve previously obtained limits

Charge Asymmetry : I+jets

• Expect small asymmetry between top and anti-top in SM

• Observable : $\Delta |y| = |y_t| - |y_{\overline{t}}|$

• Subtract background and apply unfolding procedure to obtain truth-level distribution

$$A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$$

CMS $A_c = 0.004 \pm 0.010(stat.) \pm 0.012(syst.)$

ATLAS $A_c = -0.018 \pm 0.028(stat.) \pm 0.023(syst.)$

Consistent with SM prediction

Differential Charge Asymmetry : I+jets

• Investigate Tevatron (CDF) excess for $M_{t\bar{t}} > 450 \text{ GeV}$

Charge Asymmetry : dilepton

- The charge asymmetry from *t t* is transmitted to the leptons
- It is possible to also measure a purely leptonic based asymmetry
- Rapidity difference between I⁺ and I⁻

SM (MC@NLO)

$$A_{\rm C}^{\ell\ell} = 0.004 \pm 0.001$$
 and $A_{\rm C}^{t\bar{t}} = 0.006 \pm 0.002$

Measurement :

$$A_{\rm C}^{\ell\ell} = 0.023 \pm 0.012 \,(\text{stat.}) \pm 0.008 \,(\text{syst.})$$
$$A_{\rm C}^{t\bar{t}} = 0.057 \pm 0.024 \,(\text{stat.}) \pm 0.015 \,(\text{syst.})$$

Combined ATLAS dilepton and I+jets :

 $A_{\rm C}^{t\bar{t}} = 0.029 \pm 0.018 \,(\text{stat.}) \pm 0.014 \,(\text{syst.})$

Consistent with SM prediction

Spin Correlations

- Spins of t and \overline{t} are predicted to be correlated in SM.
- Top decay before hadronization allows to measure top spin from its decay products.
- By dilepton channel, $\Delta \phi$ between 2 leptons in the lab frame.

 $f_{SM}F_{SM-spincorr}(\Delta\phi) + (1 - f_{SM})F_{no-spincorr}(\Delta\phi)$

Summary

- LHC is working really well as a top factory!
 -- thousands of top quarks have been produced
- Rich program of top properties measurements now underway. Already several LHC measurement now worlds best.

-- Observation of spin correlations, W polarization...

- All measurements are consistent with SM (so far).
- Systematic uncertainties dominate most measurements now.
 Will improve with better understanding of detector and top modeling

Thank you very much!

Top quark Physics with ATLAS & CMS

Top quark decays take place almost exclusively: $\mathbf{t} \implies \mathbf{W} + \mathbf{b}$

	tt		" CALLON CONTROL I						
Channel		All Ha (quark (T ^{had} :	HadronicSingark:45%)(I=e orad:12.3)(I= 1		e lepton J → ~30%) [⊅] →6%)	(e (et ^{lep}	Dilepton (ee,µµ,eµ →~4.5%) (eт ^{lep} ,µт ^{lep} ,T ^{lep} t ^{lep} →~1.9%)		
Products		6 jets		l+E _⊤ ^{miss} +4jets l=(e,µ)		2I+E _T ^{miss} +2jet I=(e,µ,т)			
Background			•	:		C			
	Single top		$u(\overline{d})$ $d(\overline{u})$ W^+						
	Channel		t-channel		Wt production		s-channel		
	Products		I+E _T ^{mist}	^s +2jets	2I+E ^{miss} +	1 jets	ets I+E _t ^{miss} +2jet		
	Background								

Top Quark Mass : systematic uncertainties

ATLAS: arXiv.1203.5755 Submitted to EPJC

CMS-PAS-TOP-11-015

1.0 fb⁻¹	ld-an	alysis	2d-analysis		Combinations	
	e+jets	µ+jets	e+jets	µ+jets	ld	26
Measured value of m_{top}	172.93	175.54	174.30	175.01	174.35	174.53
Data statistics	1.46	1.13	0.83	0.74	0.91	0.61
Jet energy scale factor	na.	18.	0.59	0.51	10.	0.43
Method calibration	0.07	< 0.05	0.10	< 0.05	< 0.05	0.07
Signal MC generator	0.81	0.69	0.39	0.22	0.74	0.33
Hadronisation	0.33	0.82	0.20	0.06	0.43	0.15
Pileup	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Underlying event	0.06	0.10	0.42	0.96	0.08	0.59
Colour reconnection	0.47	0.74	0.32	1.04	0.62	0.55
ISR and FSR (signal only)	1.45	1.40	1.04	0.95	1.42	1.01
Proton PDF	0.22	0.09	0.10	0.10	0.15	0.10
W+jets background normalisation	0.16	0.19	0.34	0.44	0.18	0.37
W+jets background shape	0.11	0.18	0.07	0.22	0.15	0.12
QCD multijet background normalisation	0.07	< 0.05	0.25	0.33	< 0.05	0.20
QCD multijet background shape	0.14	0.12	0.38	0.30	0.09	0.27
Jet energy scale	1.21	1.25	0.63	0.71	1.23	0.66
b-jet energy scale	1.09	1.21	1.61	1.53	1.16	1.58
b-tagging efficiency and mistag rate	0.21	0.13	0.31	0.26	0.17	0.29
Jet energy resolution	0.34	0.38	0.07	0.07	0.36	0.07
Jet reconstruction efficiency	0.08	0.11	< 0.05	< 0.05	0.10	< 0.05
Missing transverse momentum	< 0.05	< 0.05	0.12	0.16	< 0.05	0.13
Total systematic uncertainty	2.46	2.56	2.31	2.57	2.50	2.31
Total uncertainty	2.86	2.80	2.46	2.68	2.66	2.39

4.7 fb ⁻¹	δ_{m_t} (GeV)	$\delta_{ m JES}$
Calibration	0.15	0.001
b-tagging	0.17	0.002
<i>b</i> -JES	0.66	0.000
p_T - and η -dependent JES	0.23	0.003
Jet energy resolution	0.21	0.003
Missing transverse energy	0.08	0.001
Factorization scale	0.76	0.007
ME-PS matching threshold	0.25	0.007
Non-tī background	0.09	0.001
Pile-up	0.38	0.005
PDF	0.05	0.001
Total	1.18	0.012

Differential Charge Asymmetry : I+jets

ATLAS: arXiv:1203.4211, submitted EJPC CMS: CMS-PAS-TOP-11-030

