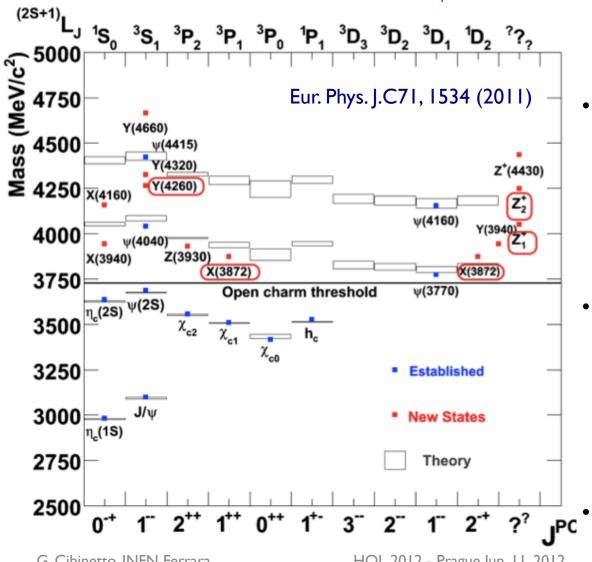


Charmonium-like states review

Gianluigi Cibinetto - INFN Ferrara from the BaBar collaboration

Outline

- Introduction
- charmonium like states in γγ interaction

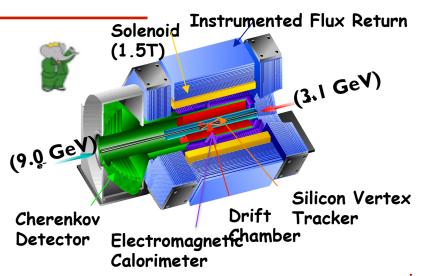

$$-\gamma\gamma$$
 -> J/ψ ω

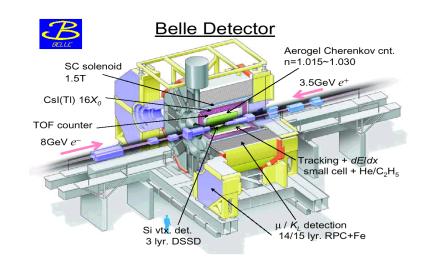
$$-\gamma\gamma - \eta_{c}\pi^{+}\pi^{-}$$

- charged charmonia (Z^+, Z_1^+, Z_2^+)
- states with strange content: $J/\psi \phi$.
- $\psi(1S, 2S) \pi^+\pi^-$ spectrum after initial state radiation

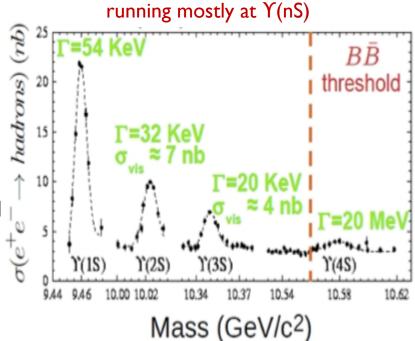
Motivations

The charmonium spectrum

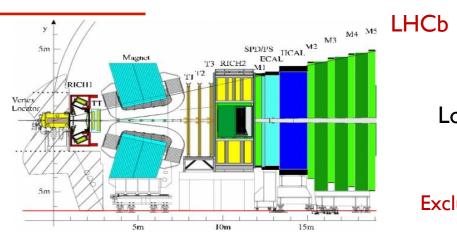



Introduction

- Below the $D\overline{D}$ threshold all the states of the charmonium spectrum are established; their measured decay properties are in good agreement with theory.
- Many unexpected states above the \overline{DD} threshold. Several exotic hypotheses on their nature: e.g. tetraquarks, hadronic molecules, hybrids, glueballs, hadro-quarkonia.
- To identify exotics:
 - Measure IPC that is forbidden for charmonium: 0+-, 1-+, 2+-
 - Observe a narrow width for a state above $D\overline{D}$ threshold
 - Observe a **c**c-like state with charge and/or strangeness


But also threshold effects, coupled channels, artifacts...

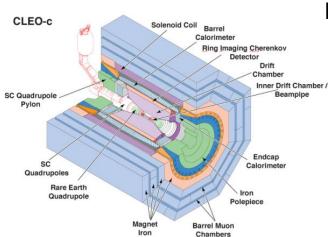
Charmonium like states at B factories

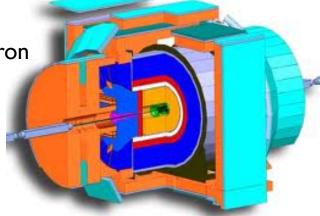


- Large samples of Y(nS) and B mesons
- also very large samples of charm mesons and chamonium
 - $\sigma(e^+e^-\rightarrow c\bar{c}) \sim 1.3$ nb
 - in b \rightarrow c decays
 - in ISR production
 - also double charmonium and γγ
- Low multiplicity, can reconstruct complete events.

	BELLE	BaBar
Y (5S)	121 fb ⁻¹	
Y (4S)	711 fb ⁻¹	433 fb ⁻¹
Y (3S)	3.0 fb ⁻¹	30 fb ⁻¹
Y (2S)	24 fb ⁻¹	14 fb ⁻¹
Y (1S)	5.7 fb-1	
Off-res	87 fb ⁻¹	54 fb ⁻¹
Scan	68fb ⁻¹	
Total	1020fb ⁻¹	531fb ⁻¹

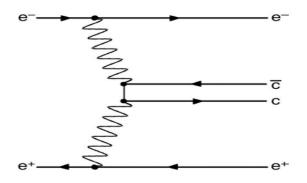
Charmonium like states outside B-factories


Dedicated detectors for B physics low p_⊤ regime


Low or moderate luminosity and pile-up wrt other LHC experiments

Exclusive final states in high multiplicity environment

CDF

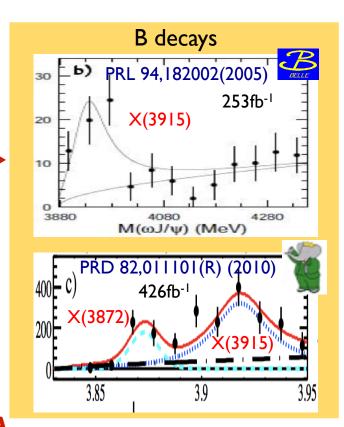

General purpose detector at Tevatron high p_⊤ regime

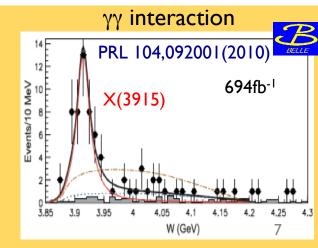
CLEO-c

at the Cornell Electron Storage Ring (CESR) Experiment dedicated to charm physics

charmonium like states in yy interaction

$$\gamma\gamma \longrightarrow J/\psi \omega$$

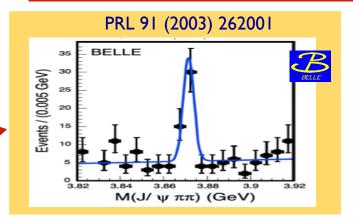

$$\gamma\gamma \longrightarrow \eta_c \pi^+\pi^-$$

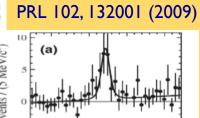

$\gamma\gamma \longrightarrow J/\psi \omega$ motivation (I)

The X(3915)

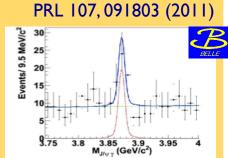
- The X(3915) was seen both by Belle and BaBar in B \rightarrow X(3915)K, with X(3915) \rightarrow J/ ψ ω
- Belle observed also the $\times(3915)$ in $\gamma \gamma \to \times(3915) \to 1/\psi \omega$
- Interpretation of X(3915) as the $\chi_{c0}(2P)$ or $\chi_{c2}(2P)$ state has been suggested. T. Branz et al., Phys. Rev. D 83, 114015 (2011)
- $\Gamma_{\gamma\gamma}(X(3915))\mathcal{B}(X(3915)\to\omega J/\psi)$ reported by Belle is unexpectedly large compared to other excited charmonia.
- Molecular interpretation has also been suggested

X. Liu et al., Eur. Phys. Jour. C 61, 411 (2009)T. Branz et al., Phys. Rev. D 80, 054019 (2009)W. H. Liang et al., Eur. Phys. Jour. A 44, 479 (2010)



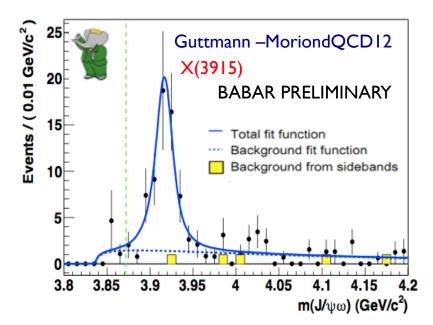

$\gamma\gamma$ —> J/ ψ ω motivation (II)

The X(3872)


• The X(3872) was discovered in B decays by Belle experiment in 2003.

- The observation of its decay into J/ ψ γ ensures that this particle has positive C-parity.
- The possible X(3872) quantum numbers could be $I^{PC} = I^{++}$ or $I^{PC} = 2^{-+}$.
- The decay $X(3872) \rightarrow J/\psi \omega$ was seen in B decays both by Belle and BaBar.
- $\gamma \gamma \rightarrow X(3872)$ would imply $J^{PC} = 2^{-+}$ and it's not seen in Belle's spectrum.

 $m_{\chi} (GeV/c^2)$



CDF PRL 98,132002

hypothesis	3D χ^2 / 11 d.o.f.	χ^2 prob.
1++	13.2	27.8%
2^{-+}	13.6	25.8%
1	35.1	0.02%
2^{+-}	38.9	$5.5 \cdot 10^{-5}$
1+-	39.8	$3.8 \cdot 10^{-5}$
2	39.8	$3.8 \cdot 10^{-5}$
3^{+-}	39.8	$3.8 \cdot 10^{-5}$
3	41.0	$2.4 \cdot 10^{-5}$
2^{++}	43.0	$1.1 \cdot 10^{-5}$
1-+	45.4	$4.1 \cdot 10^{-6}$
$^{0-+}$	103.6	$3.5 \cdot 10^{-17}$
$^{0+-}$	129.2	$\leq 1.10^{-20}$
0++	163.1	≤1.10 ⁻²⁶ 8

$\gamma\gamma$ —> J/ψ ω : new BaBar results

- BaBar with 520 fb⁻¹ collected at the Υ (nS) sample (n = 2,3,4) confirmed the evidence of the X(3915) in Υ Υ \to X(3915) \to J/ ψ ω
- Good agreement with Belle's results

	BABAR	Belle *
$Mass (MeV/c^2)$	$3919.4 \pm 2.2 \pm 1.6$	$3915 \pm 3 \pm 2$
Width (MeV)	$13 \pm 6 \pm 3$	$17 \pm 10 \pm 3$
$\Gamma_{\gamma\gamma} \times \mathcal{B} \text{ (J=0) (eV)}$	$52 \pm 10 \pm 3$	$61 \pm 17 \pm 8$
$\Gamma_{\gamma\gamma} \times \mathcal{B} \text{ (J=2) (eV)}$	$10.5 \pm 1.9 \pm 0.6$	$18 \pm 5 \pm 2$

*Belle: PRL 104, 092001 (2010)

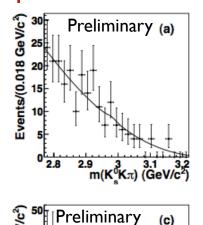
If
$$\Gamma_{\gamma\gamma}=\mathcal{O}(1~{\rm keV})$$
 (typical $car{c}$), then $\mathcal{B}(J/\psi\omega)>(1-6)\%$

which is relatively large compared to charmonium model predictions

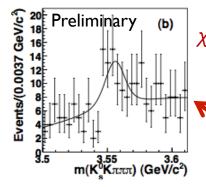
No evidence of the X(3872), limit for J=2 hypothesis

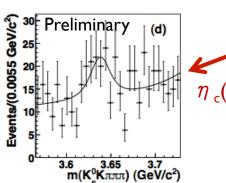
$$\Gamma_{\gamma\gamma}(\mathsf{X}(3872))XB(X(3872) o J/\psi\omega)(J=2){<}1.7~\mathrm{eV}$$

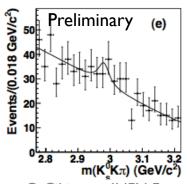
$\gamma\gamma \longrightarrow \eta_c \pi^+\pi^-$ motivation



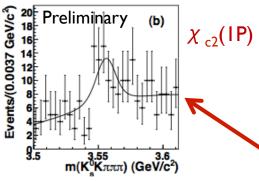
- BaBar looked at the process $\gamma \gamma \to X \to \eta_c$ (IS) $\pi^+\pi^-$ where X stands for one of the resonances $\chi_{c2}(IP)$, $\eta_c(2S)$, X(3872), X(3915) or $\chi_{c2}(2P)$. $\eta_c(IS) \to K_s^0 K^\pm \pi^\mp$; $K_s^0 \to \pi^+\pi^-$
- Prediction for B(η_c (2S) $\rightarrow \eta_c$ (1S) $\pi^+\pi^-$) ~2.2% obtained from Γ (η_c (2S) $\rightarrow \eta_c$ (1S) $\pi^+\pi^-$)/ Γ (ψ (2S) \rightarrow J/ ψ $\pi^+\pi^-$) ~2.9 M.B.Voloshin Mod. Phys. Lett A17:1533-1538,2022
- If the \times (3872) is the $I^{+}D_{2}$ state η_{c2} the branching fraction $B(\times(3872) \to \eta_{c}\pi^{+}\pi^{-})$ could be significantly larger than $B(\times(3872) \to J/\psi \pi^{+}\pi^{-})$.

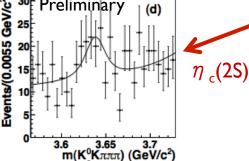

 S. L. Olsen (Belle Collaboration), Int. J. Mod. Phys. A497 20, 240 (2005).
- The quantum numbers $J^{PC} = 2^{-+}$ of the η_{c2} are consistent with CDF results PRL 98.132002

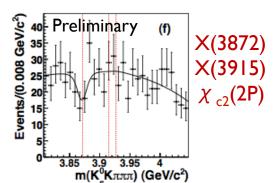

$\gamma\gamma \longrightarrow \eta_c \pi^+\pi^-$ at BaBar



Events/(0.018 GeV/c







2.9 3 3.1 3.2 m(K⁰Kπ) (GeV/c²)

G. Cibinetto, INFN Ferrara

Signal extraction in two steps

- 1. $m(K_s^0K^{\pm}\pi^{\mp})$ distribution parameters of the combinatoric background from a one-dimensional fit to $m(K_s^0K^{\pm}\pi^{\mp})$
- 2. two-dimensional fit in m(K_s^0 K[±] π ⁺) and m($K_c^0K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}$)

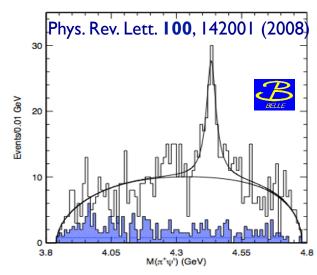
contribution from non-resonant

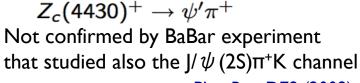
$$\gamma\gamma \to X \to K_s^0 K^{\pm} \pi^{\mp} \pi^+ \pi^-$$

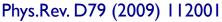
Resonance	$\Gamma_{\gamma\gamma}\mathcal{B}(\mathrm{eV})$		
resonance	Central value	UL	
$\chi_{c2}(1P)$	$7.2^{+5.5}_{-4.4} \pm 2.9$	15.7	
$\eta_c(2S)$	$65^{+47}_{-44} \pm 18$	133	
X(3872)	$-4.5^{+7.7}_{-6.7} \pm 2.9$	11.1	
X(3915)	$-13^{+12}_{-12} \pm 8$	16	
$\chi_{c2}(2P)$	$-16^{+15}_{-14} \pm 6$	19	

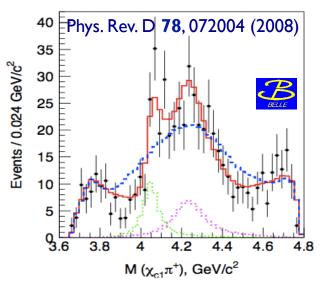
Using $B(\chi_{c2}(1P) \to K_s^0 K^{\pm} \pi^{\mp})$ and $B(\eta_c(2S) \to K_s^0 K^{\pm} \pi^{\mp})$ we obtain:

$$B(\chi_{c2}(1P) \to \eta_c(1S)\pi\pi) < 2.2\%$$
 @90%CL $B(\eta_c(2S) \to \eta_c(1S)\pi\pi) < 7.4\%$ @90%CL

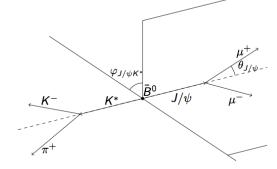



charged charmonia


 $Z(4430)^+$, $Z_1(4050)^+$ and $Z_2(4250)^+$


Charged charmonia

- Belle observes broad, charged charmonium-like states in $(c\bar{c})K\pi$ Dalitz analyses
 - $Z(4430)^+ \text{ in } B \to \psi (2S) \pi^+ K$
 - $Z_1(4050)^+$ and $Z_2(4250)^+$ in $B \to \chi_{cl} \pi^+ K$
- Quark content at least $c\bar{c}ud$: no simple $q\bar{q}$ meson!


$$Z_c(4050)^+
ightarrow \chi_{c1}\pi^+$$

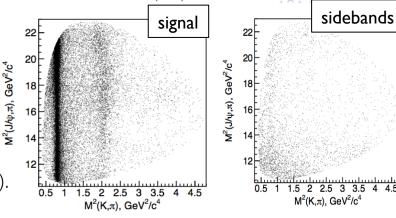
and $Z_c(4250)^+
ightarrow \chi_{c1}\pi^+$

$\bar{B}^0 \rightarrow J/\psi$ (2S) $\pi^+ K^-$ amplitude analysis at Belle

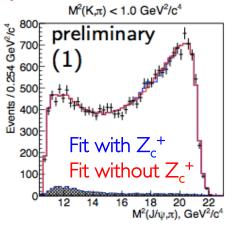
presented by K.Chilikin @ CHARM12

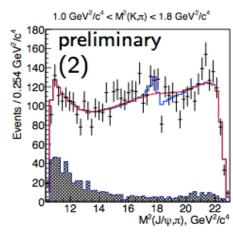
The variables considered are Dalitz variables $M^2(K,\pi), M^2(J/\psi,\pi)$ and angles $\theta_{J/\psi}, \phi_{J/\psi K*}$

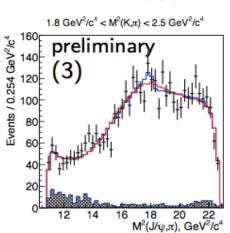
Signal model

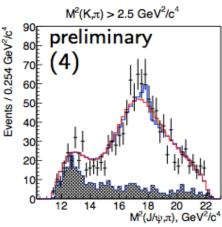

- All K π resonances: K₀*(800), K*(892), K*(1410), K₀*(1430), K₂*(1430), K*(1680), K₃*(1780), $K_0^*(1950), K_2^*(1980), K_4^*(2045).$
- Masses and widths of all K* resonances are free parameters (within their PDG uncertainties).
- $| Z_c^+ (M, \Gamma \text{ are free}). |^P = 0^-, |^+, |^-, 2^+, 2^-.$
- Constant non-resonant amplitude.

- Here $\Delta E = \sum_{i} E_{i} E_{\text{beam}}$.
 - Signal: $|\Delta E| < 20 MeV$ (31220 events, background fraction $\sim 6\%$)
 - Sidebands: $40 MeV < |\Delta E| < 80 MeV$

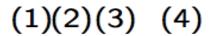

G. Cibinetto, INFN Ferrara

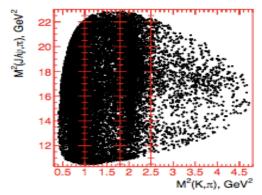

- Peaking components:
 - $//\psi + (K^*(892) \rightarrow K\pi)$
 - $//\psi + (K_s^0 \rightarrow \pi \pi \text{ (identified as } K\pi))$
- Smooth component (dominant; any other source).




$\mathbf{\bar{B}^0} \rightarrow J/\psi$ (2S) $\pi^+ K^-$ at Belle

presented by K.Chilikin @ CHARM12





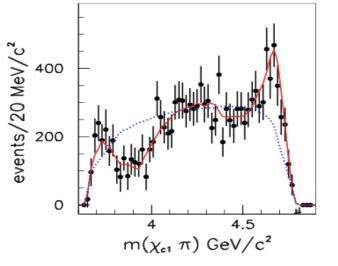
$$\mathcal{B}(\bar{B}^0 \to Z_c(4430)^+ K^-) \mathcal{B}(Z_c(4430)^+ \to J/\psi \pi^+) < 8 \times 10^{-6} (95 \% CL)$$

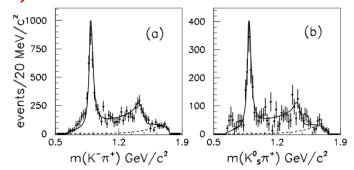
BaBar result: < 4 x 10⁻⁶ Phys.Rev. D79 (2009) 112001

No significant signal of Z_{ϵ}^{+} is found.

J^P	M, MeV	Γ, MeV	Local sign.	Sign.		
	$Z_c^+ o J/\psi \pi^+$					
0-	4076 ± 17	240 ± 21	4.7σ	2.9σ		
	4228 ± 8	51 ± 15	4.5σ	2.8σ		
1-	4108 ± 9	55 ± 12	4.5σ	2.8σ		
1+	4241 ± 6	40 ± 10	4.6σ	3.0σ		
2-	3942 ± 10	57 ± 24	2.9σ	0.7σ		
2+	4669 ± 5	26 ± 5	3.8σ	2.5σ		
Z	$Z_c(4430)^+ \to J/\psi \pi^+$					
0-	4437 ± 18	122 ± 44	1.6σ	0.8σ		
1-	4446 ± 21	171 ± 54	1.3σ	1.2σ		
1+	4450 ± 15	129 ± 22	4.1σ	3.1σ		
2-	4427 ± 10	47 ± 22	2.1σ	0.7σ		
2+	4443 ± 11	153 ± 46	$< 0.1\sigma$	$< 0.1\sigma$		

Search for $Z_1(4050)^+$, $Z_2(4250)^+$ at BaBar


analysis procedure


• Study of B $\rightarrow \chi_{cl} K \pi$ decays to search for Z_l (4050)⁺ and Z_2 (4250)⁺ found by Belle.

$$\bar{\mathsf{B}}^0 \to \pi^+ \mathsf{K}^- \chi_{cl}$$

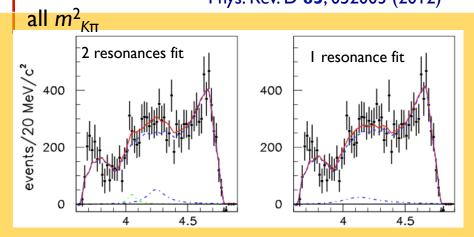
-
$$B^+ \rightarrow \pi^+ K_s^0 \chi_{cl}$$

$$-\chi_{cl} \rightarrow J/\psi \omega$$

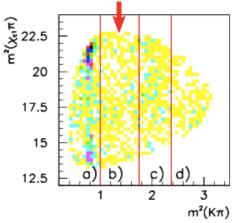
 χ^2 fits to the background subtracted and efficiency-corrected k π mass spectra in terms of S, P and D wave amplitudes.

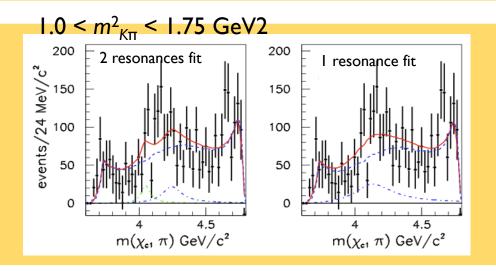
Compute the efficiency-corrected Legendre polynomial moments $< Y_L^0 >$ in each $k\pi$ mass interval by correcting for efficiency and then weighting each event by the $Y_L^0(\cos\theta)$ functions.

Using the information from the K π system a description of the $\chi_{cl}\pi$ mass distribution is studied.


The excellent description of the data indicates that the angular information from the K π channel is able to account for the structures observed in the $\chi_{cl}\pi$ projection.

BaBar results for $Z_1(4050)^+, Z_2(4250)^+$


429fb-1



Phys. Rev. D 85, 052003 (2012)

Belle: maximal resonant activity in window 1.0 < $m^2_{K\pi}$ < 1.75 GeV2

Set upper limits at 90%C.L.

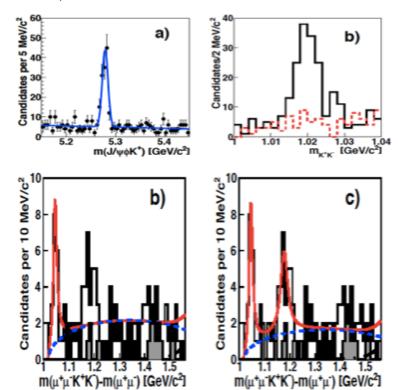
$$\begin{split} \mathcal{B}(\bar{\textit{B}}^{0} \to \textit{Z}_{1}^{+}\textit{K}^{-}) \times \mathcal{B}(\textit{Z}_{1}^{+} \to \chi_{c1}\pi^{+}) < 1.8 \times 10^{-5} \\ \mathcal{B}(\bar{\textit{B}}^{0} \to \textit{Z}_{2}^{+}\textit{K}^{-}) \times \mathcal{B}(\textit{Z}_{2}^{+} \to \chi_{c1}\pi^{+}) < 4.0 \times 10^{-5} \end{split}$$

For a single $Z(4150)^+$, upper limit

$$\mathcal{B}(\bar{\textit{B}}^{0} \rightarrow \textit{Z}^{+}\textit{K}^{-}) \times \mathcal{B}(\textit{Z}^{+} \rightarrow \chi_{c1}\pi^{+}) < 4.7 \times 10^{-5}$$

Within (large) uncertainties, limits compatible with Belle's results Belle, Phys. Rev. D 78, 072004 (2008)

new states with strange content


Y(4140), X(4274)

New states to $J/\psi \phi$

PRL 102, 242002 (2009)

- CDF studied B⁺ \to J/ ψ ϕ K⁺ decays and found an excess of events in the J ψ ϕ invariant mass at threshold
- Updated in arXiv:1101.6058

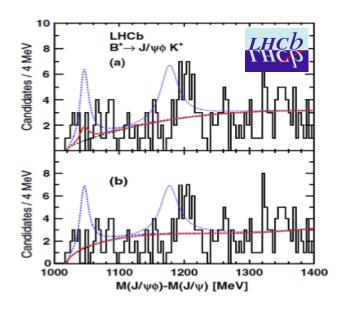
Allowed J^{PC} = 0⁺⁺, I⁺⁻, 2⁺⁺

$$Y(4140): 19 \pm 6 \pm 3 \text{ evts } (5 \sigma)$$

$$M = 4143^{+2.9}_{-3.0} \pm 0.6 \text{ MeV}/c^2$$

$$\Gamma = 11.7^{+8.3}_{-5.0} \pm 3.7 \text{ MeV}$$

$$\frac{\mathcal{B}(B^+ \to YK^+) \times \mathcal{B}(Y \to J\psi\phi)}{\mathcal{B}(B^+ \to J/\psi\phi K^+)} = 0.149 \pm 0.039 \pm 0.024$$


$$X(4274): 22 \pm 8 \text{ evts } (3.1 \sigma)$$

$$M = 4274.4^{+8.4}_{-6.7} \pm 1.9 \text{ MeV}/c^2$$

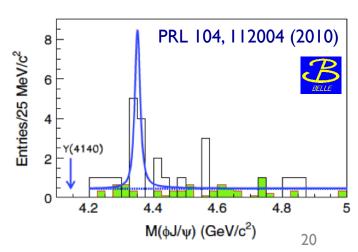
 $\Gamma = 32.3^{+21.9}_{-15.3} \pm 7.6 \,\mathrm{MeV}$

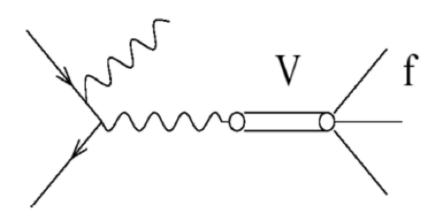
J/ψ Φ study at LHCb and Belle

• LHCb searched for J/ ψ ϕ resonances in B⁺ \rightarrow J/ ψ ϕ K⁺ PRD-RC 85, 091103 (2012)

Y(4140): Expect:
$$35 \pm 9 \pm 6$$
 evts

 $< 16 \text{evts (a)}$
 $< 13 \text{evts (b)}$
 $\frac{\mathcal{B}(B^{+} \to YK^{+}) \times \mathcal{B}(Y \to J\psi\phi)}{\mathcal{B}(B^{+} \to J/\psi\phi K^{+})} < 0.07$


X(4274): Expect: 53 ± 19 evts

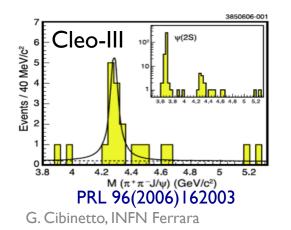

 $< 24 \text{evts (a)}$
 $< 20 \text{evts (b)}$
 $\frac{\mathcal{B}(B^{+} \to YK^{+}) \times \mathcal{B}(X \to J\psi\phi)}{\mathcal{B}(B^{+} \to J/\psi\phi K^{+})} < 0.08$

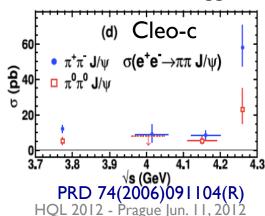
- Belle searched for $\gamma \gamma \to Y(4140) \to \phi J/\psi$
- No evidence of the Y(4140)
- But find 3.1 σ evidence for a new structure

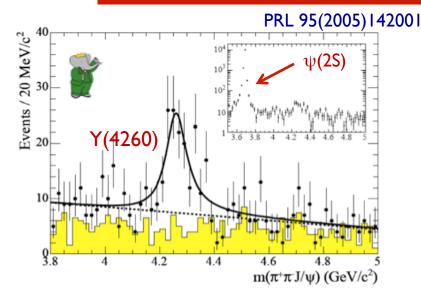
$$M = 4350.6^{+4.6}_{-5.1} \pm 0.7 \text{ MeV}/c^2$$

$$\Gamma = 13^{+18}_{-9} \pm 4 \ {
m MeV}$$

$\psi \pi^+\pi^-$ spectrum after initial state radiation

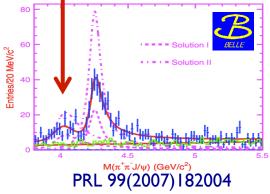

$$Y(4260) \rightarrow J/\psi \pi^+\pi^-$$


$$Y(4330), Y(4660) \rightarrow \psi(2S) \pi^{+}\pi^{-}$$


 $e^+e^- \rightarrow \gamma_{ISR} J/\psi \pi^+\pi^-$

BABAR searched for states decaying to J/ ψ π ⁺ π ⁻ in ISR process (J^{PC} = I ⁻⁻).

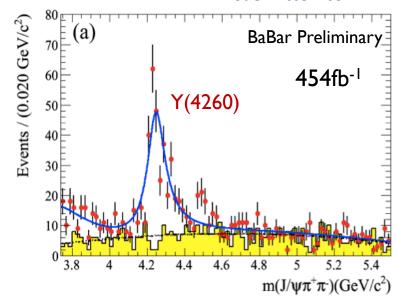
- BaBar did not find the X(3872) nor one of its predicted partners but found an unexpected broad state around 4260 MeV.
- the Y(4260) has been searched and not found in
 - many exclusive $D_{(s)}^{(*)}\overline{D}_{(s)}^{(*)}$ modes
 - many exclusive light hadron modes
 - p\bar{p} final state

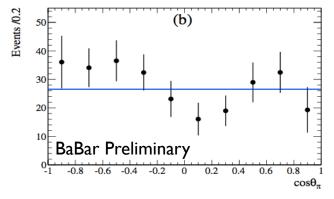


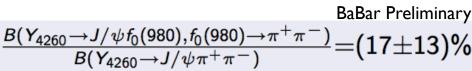
All I⁻⁻ slots in charmonium spectrum are filled: the nature of Y(4260) is still not clear

BELLE confirmed the Y(4260) and suggested the existence of Y(4008)

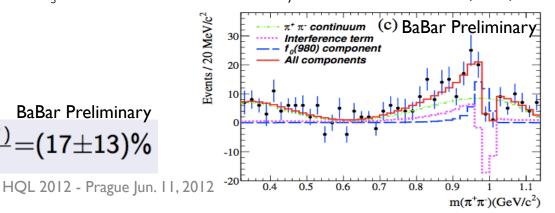
Y(4260): BaBar preliminary resulta


arXiv:1204.2158 submitted to PRD

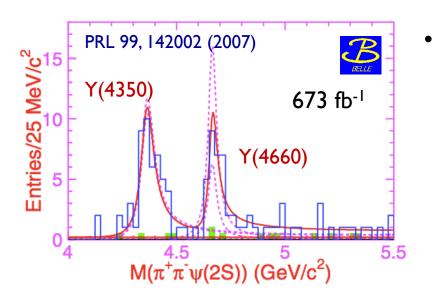

Mass
$$(Y(4260)) = 4244 \pm 5 \pm 4 \text{ MeV/c}^2$$
 $\Gamma(Y(4260)) = 114^{+16}_{-15} \pm 7 \text{ MeV}$ $\Gamma_{e^+e^-} XB(J/\psi \pi^+\pi^-) = 9.2 \pm 0.8 \pm 0.7 \text{ eV}$

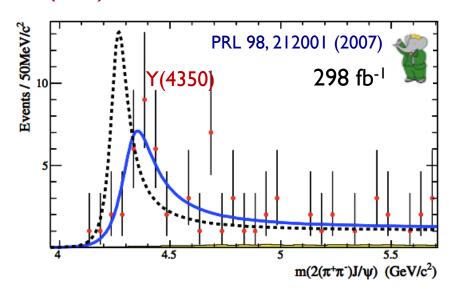

in agreement with Belle's results

The π^+ angle with respect to the J/ ψ direction in the $\pi^+\pi^-$ rest frame is consistent with S-wave

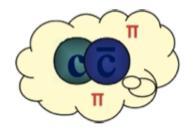


- fit the $\pi^+\pi^-$ invariant mass distribution as a coherent sum of NR + $f_0(980)$.
- mass dependence of $f_0(980)$ amplitude and phase from $D_s^+ \rightarrow \pi^+\pi^-\pi^+$ DP analysis. PRD 79, 032003 (2009)


 $=(17\pm13)\%$



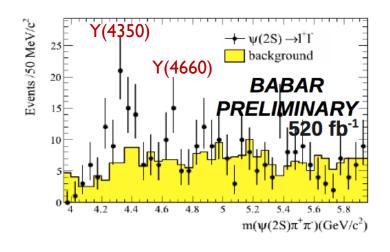
G. Cibinetto, INFN Ferrara


Y (4350) and Y (4660) $\rightarrow \psi$ (2S) $\pi^+\pi^-$

- Y(4350) observed by BaBar in ISR ψ (2S) π + π -
- Confirmed by Belle, which reported a significant excess also at 4660 MeV
- No evidence for Y(4260)

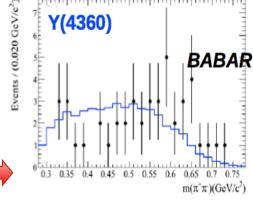
Why are there states decaying into 2^3S_1 and not to 1^3S_1 ?

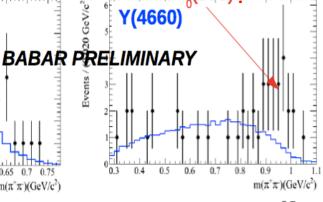

hadro-charmonium?


M.B. Voloshin arXiv:0711.4556 Dubynsky & Voloshin PLB 671 (2009) 82

ψ (2S) π ⁺ π ⁻: new BaBar result

- BABAR update using the full dataset, including Υ (2S) and Υ (3S)
- Use both ψ (2S) \rightarrow J/ ψ $\pi^+\pi^-$ and ψ (2S) \rightarrow I⁺I⁻





Mass(Y(4350)) = $4340\pm16\pm9~MeV/c^2$ $\Gamma(Y(4350)) = 94\pm32\pm13~MeV$

Mass(Y(4660)) = $4669\pm21\pm3~MeV/c^2$ $\Gamma(Y(4660)) = 104\pm48\pm10~MeV$

statistics too low to draw conclusions on $\pi^+\pi^-$ invariant mass distribution

Outline Summary

charmonium like states in γγ interaction

$$-\gamma\gamma \longrightarrow J/\psi \omega$$

$$- \gamma \gamma \longrightarrow \eta_{c} \pi^{+} \pi^{-}$$

new results have been presented for the X(3915) and X(3872): overall agreement among different experiments, nevertheless the nature of the resonances is still matter of discussion

• charged charmonia (Z^+, Z_1^+, Z_2^+)

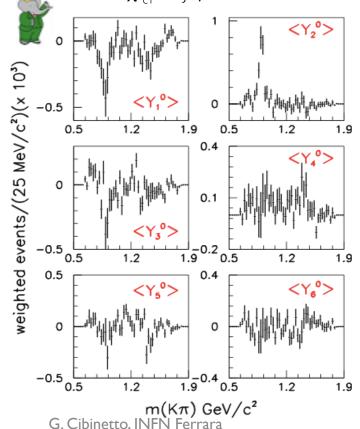
the interpretation would be clear, but complete disagreement between BaBar and Belle. LHCb studies in progress: should have more statistics than BaBar+Belle

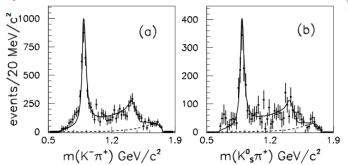
- states with strange content: $J/\psi \phi$.
- disagreement between CDF, LHCb and Belle experiments. Waiting for BaBar result.
- $\psi(1S, 2S) \pi^+\pi^-$ spectrum after initial state radiation

The overpopulation of J^{PC}=1⁻⁻ states after ISR and their many null searches make this family of new states hard to be interpreted.

and conclusion

- Quarkonium spectroscopy is a very interesting and vital field; many new exotic states have been discovered in less than one decade.
- New exciting results are still coming from BaBar and Belle, more to come from LHC.
- Still many missing pieces need to be found to have the full picture.
- Even more exciting new results can be expected in the not-too-distant future by the next-generation Bfactories




in memory of Popat Patel colleague and friend

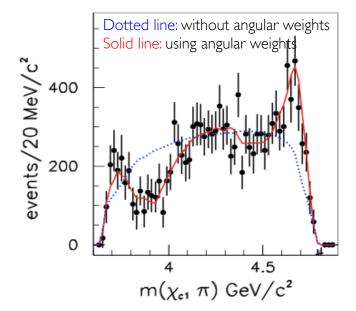
Search for $Z_1(4050)^+$, $Z_2(4250)^+$ at BaBar

analysis procedure

- Study of B $\rightarrow \chi_{cl} K \pi$ decays to search for Z_1 (4050)⁺ and Z_2 (4250)⁺ found by Belle.
 - $\bar{\mathsf{B}}^0 \to \pi^+ \mathsf{K}^- \chi_{cl}$
 - $B^+ \rightarrow \pi^+ K_s^0 \chi_{cl}$
 - $-\chi_{cl} \rightarrow J/\psi \omega$

Binned χ^2 fits to the background subtracted and efficiency-corrected k π mass spectra in terms of S, P and D wave amplitudes.

Compute the efficiency-corrected Legendre polynomial moments < $Y_L^0 >$ in each $k\pi$ mass interval by correcting for efficiency and then weighting each event by the Y_L^0 (cos θ) functions.

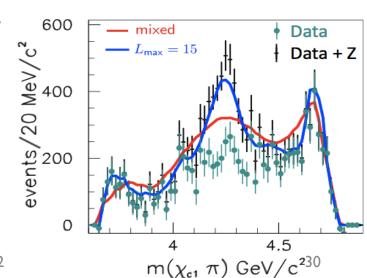

- S-P interference in the $\langle Y_1^0 \rangle$ moment.
- Hint at 1.7 GeV in $<Y_1^0>$ indicate the presence of a P-wave
- Presence of the spin-1 $K^*(890)$ in the $\langle Y_2^0 \rangle$ moment
- Presence of the spin-2 $K_2^*(1430)$ in the $< Y_4^0 >$ moment
- $<Y_6^0>$ is consistent with zero \rightarrow The presence of scalar Z resonances should show up especially in high $<Y_L^0>$ moments

HQL 2012 - Prague Jun. 11, 2012

Search for $Z_1(4050)^+$, $Z_2(4250)^+$ at BaBar

data driven MC simulation

• Using the information from the K π system a description of the $\chi_{cl}\pi$ mass distribution is studied. A MC simulation for B $\to \chi_{cl}K\pi$ has been performed. The best χ^2/NDF obtained is for $L_{max}=5$.


The result of the simulation with $L_{max} = 5$ is superimposed on the data.

The excellent description of the data indicates that the angular information from the K π channel with L_{max} = 5 is able to account for the structures observed in the $\chi_{cl} \pi$ projection.

This indicates the absence of significant structure in the

exotic $\chi_{cl} \pi^+$ channel.

A 25% contribution of $Z_2^+(4250)$ in the $\overline{\bf B}{}^0\to \pi^+{\rm K}^-\chi_{cl}$ is added on a MC simulation. The Legendre polynomial moments is then computed. The resulting MC simulation does not describe the MC data well.

