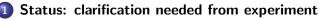

Quarkonium production and polarization: a review over relevant experiments

Bruce Yabsley (for ATLAS, CMS, LHCb)

ATLAS / University of Sydney ARC Centre of Excellence for Particle Physics at the Terascale (http://www.coepp.org.au/)


XIth International Conference on Heavy Quarks and Leptons, Charles University, Prague; 11th June 2012

1 / 32

Bruce Yabsley (Sydney / CoEPP)

Outline

Polarization:

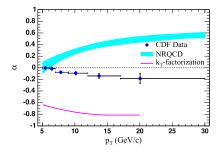
- Review of principles
- Developments in experimental practice
- Reconstruction performance
- Spectroscopy
- Differential cross-sectons
 - $\Upsilon(nS)$ states
 - J/ψ and $\psi(2S)$
- **6** Production ratios
 - 7 Study of richer final states
 - Summary

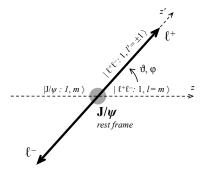
status

Status: one thing that's clear is that little is clear QWG review: Eur. Phys. J. C 71, 1534 (2011) {arXiv:1010.5827v3 [hep-ph]}

Despite recent theoretical advances, which we shall detail below, we are still lacking a clear picture of the mechanisms at work in quarkonium hadroproduction. These mechanisms would have to explain, in a consistent way, both the cross section measurements and the polarization measurements for charmonium production at the Tevatron [329, 628, 650, 655-658] and at RHIC [659-664]. For example, the observed p_T spectra in prompt ψ production seem to suggest that a dominant contribution at large p_T arises from a coloroctet process in which a gluon fragments into a $Q\bar{Q}$ pair, which then evolves nonrelativistically into a quarkonium. Because of the approximate heavy-quark spin symmetry of NRQCD, the dominance of such a process would lead to a substantial transverse component for the polarization of ψ 's produced at large p_T [665–667]. This prediction is clearly challenged by the experimental measurements [658].

- no consistent theoretical account
- some serious disagreements: → [figure: CDF; PRL 99, 132001 (2007)]
- \exists experimental disagreements too



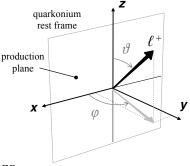

Fig. 55 The polarization parameter α for prompt J/ψ production in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV as a function of p_T . The points are the CDF data (588), the *band* is the prediction from LO NRQCD factorization [667], and the *line* is the prediction from k_T factorization [640]. The theoretical uncertainty in the LO NRQCD factorization rediction was obtained by comparing the MRST98LO [732] and the CTEQSL [733] distributions), the uncertainties from the parton distributions distributions), the uncertainties from the color-octet NRQCD long-distance matrix elements, the uncertainties that are obtained by varying m_c in the range 1.45 GeV $< m_c < 1.55$ GeV, and the uncertainties that are obtained by varying the factorization and renormalization scales in the range $0.5m_T < \mu_f = \mu_r < 2m_T$.

Polarization (

for $(J^{PC} = 1^{--}) |V\rangle = b_{+1} |+1\rangle + b_{-1} |-1\rangle + b_0 |0\rangle$ decaying $\rightarrow \ell^+ \ell^-$,

• the angular distribution $W(\cos \vartheta, arphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} \left(1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^2 \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi\right)$$

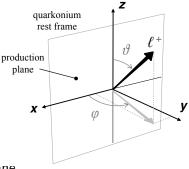

Polarization (1): general description Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

for $\left(J^{PC}=1^{--}\right)\left|V
ight
angle=b_{+1}\left|+1
ight
angle+b_{-1}\left|-1
ight
angle+b_{0}\left|0
ight
angle$ decaying $ightarrow\ell^{+}\ell^{-}$,

• the angular distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} (1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^2 \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi)$$

inclusive production: p₁, p₂, and V only;
 we (~ must) choose (x, z) : production plane

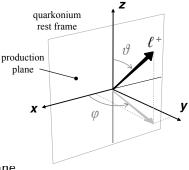

Polarization (1): general description Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

for $\left(J^{PC}=1^{--}\right)\left|V
ight
angle=b_{+1}\left|+1
ight
angle+b_{-1}\left|-1
ight
angle+b_{0}\left|0
ight
angle$ decaying $ightarrow\ell^{+}\ell^{-}$,

• the angular distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} (1 + \lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^2 \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi)$$

- inclusive production: p₁, p₂, and V only;
 we (~ must) choose (x, z) : production plane
- reflection-odd terms unobservable (parity)

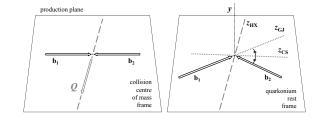

Polarization (1): general description Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

for $\left(J^{PC}=1^{--}\right)\left|V
ight
angle=b_{+1}\left|+1
ight
angle+b_{-1}\left|-1
ight
angle+b_{0}\left|0
ight
angle$ decaying $ightarrow\ell^{+}\ell^{-}$,

• the angular distribution $W(\cos \vartheta, \varphi)$

$$\propto \frac{\mathcal{N}}{(3+\lambda_{\vartheta})} (1+\lambda_{\vartheta} \cos^2 \vartheta + \lambda_{\varphi} \sin^2 \vartheta \cos 2\varphi + \lambda_{\vartheta\varphi} \sin 2\vartheta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^2 \vartheta \sin 2\varphi + \lambda_{\vartheta\varphi}^{\perp} \sin 2\vartheta \sin \varphi)$$

- inclusive production: p₁, p₂, and V only;
 we (~ must) choose (x, z) : production plane
- reflection-odd terms unobservable (parity)

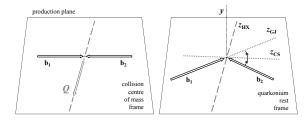


Polarization (2): choice of frame Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

different definitions of t

helicity: *Q* direction-of-flight Gottfried-Jackson: dirⁿ of one beam Collins-Soper:

dirⁿ of laboratory z



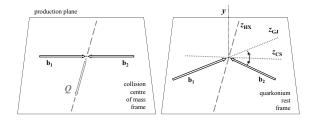
Polarization (2): choice of frame Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

different definitions of t

helicity: *Q* direction-of-flight Gottfried-Jackson: dirⁿ of one beam

Collins-Soper: dirⁿ of laboratory z

 relⁿ even of CS frame to parton-collision frame varies event-to-event (due to parton p_T): some smearing of distributions in general

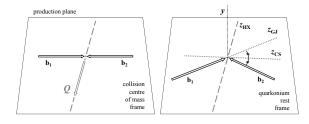

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Polarization (2): choice of frame Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

different definitions of t

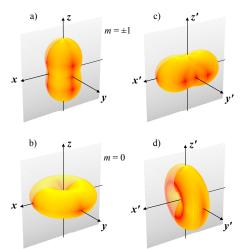
helicity: Q direction-of-flight Gottfried-Jackson: dirⁿ of one beam

Collins-Soper: dirⁿ of laboratory z

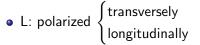

- relⁿ even of CS frame to parton-collision frame varies event-to-event (due to parton p_T): some smearing of distributions in general
- angles between frames vary event-to-event
 - \longrightarrow choice of a more *natural* frame can give greater sensitivity

Polarization (2): choice of frame Faccioli, Lourenço, Seixas, and Wöhri, EPJC 69, 657–673 (2010)

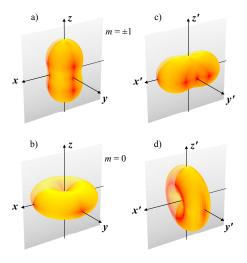
different definitions of t

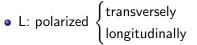

helicity: *Q* direction-of-flight Gottfried-Jackson: dirⁿ of one beam

Collins-Soper: dirⁿ of laboratory z

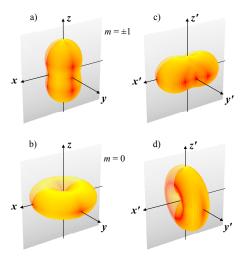


- relⁿ even of CS frame to parton-collision frame varies event-to-event (due to parton p_T): some smearing of distributions in general
- angles between frames vary event-to-event
 - \longrightarrow choice of a more *natural* frame can give greater sensitivity
- full angular distributions $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ in general needed ...

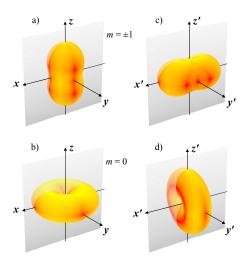

• L: polarized { transversely longitudinally



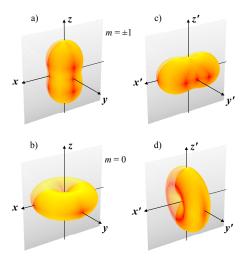
Bruce Yabsley (Sydney / CoEPP)

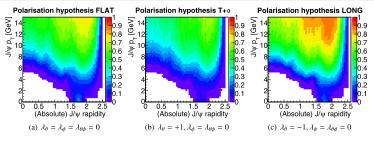


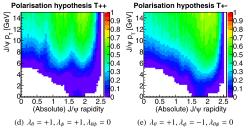
• R: meas^t frame rotated by 90°

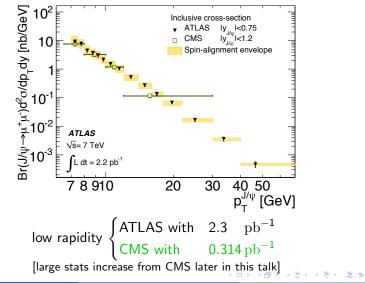


- R: meas^t frame rotated by 90°
- \bullet integration over azimuth $\varphi \longrightarrow$

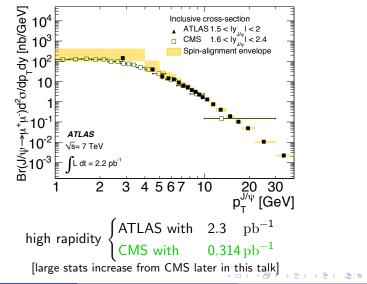

- L: polarized { transversely longitudinally
- R: meas^t frame rotated by 90°
- integration over azimuth φ → distⁿ (d) looks like distⁿ (a): longitudinal → "transverse"




- L: polarized { transversely longitudinally
- R: meas^t frame rotated by 90°
- integration over azimuth φ → distⁿ (d) looks like distⁿ (a): longitudinal → "transverse"
- if frames differ, traditional λ_{ϑ} -only meas^{ts} can't be compared w/o assumptions



- L: polarized { transversely longitudinally
- R: meas^t frame rotated by 90°
- integration over azimuth φ → distⁿ (d) looks like distⁿ (a): longitudinal → "transverse"
- if frames differ, traditional λ_{ϑ} -only meas^{ts} can't be compared w/o assumptions
- experimental acceptance is also typically a fⁿ of (λ_ϑ, λ_φ, λ_{ϑφ})



Bruce Yabsley (Sydney / CoEPP)

Quarkonium prodⁿ & polarizⁿ

Bruce Yabsley (Sydney / CoEPP)

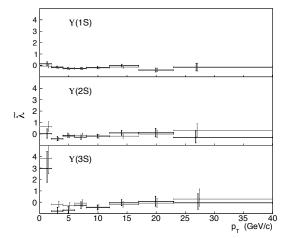
$p_{\rm T}({\rm GeV}/c)$	2.0 < y < 2.5	2.5 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.0	4.0 < y < 4.5
0-1	$1091 \pm 70 \pm 226 \pm 144$	$844 \pm 13 \pm 133 \pm 111$	$749\pm7\pm46\pm99$	$614 \pm 6 \pm 23 \pm 81$	$447\pm5\pm28\pm59$
1-2	$1495 \pm 38 \pm 282 \pm 197$	$1490 \pm 12 \pm 39 \pm 197$	$1376 \pm 8 \pm 26 \pm 182$	$1101 \pm 7 \pm 23 \pm 145$	$807 \pm 7 \pm 28 \pm 107$
2-3	$1225 \pm 20 \pm 109 \pm 162$	$1214 \pm 9 \pm 24 \pm 160$	$1053 \pm 7 \pm 19 \pm 139$	$839 \pm 6 \pm 19 \pm 111$	$588 \pm 6 \pm 22 \pm 78$
3-4	$777 \pm 11 \pm 44 \pm 103$	710 + 6 + 18 + 95	$611\pm5\pm14\pm81$	$471 \pm 4 \pm 13 \pm 62$	$315\pm4\pm14\pm42$
4–5	$424\pm 6\pm 22\pm 56$	$392 \pm 3 \pm 12 \pm 52$	$325\pm3\pm9\pm43$	$244\pm3\pm7\pm32$	$163\pm3\pm6\pm22$
5-6	$230\pm4\pm12\pm30$		$167\pm2\pm5\pm22$	$119\pm2\pm5\pm16$	$76\pm2\pm3\pm10$
6–7	$116\pm2\pm6\pm15$	$104\pm1\pm4\pm14$	$82\pm1\pm3\pm11$	$59\pm1\pm2\pm8$	$34 \pm 1.1 \pm 1.4 \pm 4.5$
7-8	$64\pm1\pm3\pm8$	$57\pm1\pm3\pm7$	$44\pm1\pm1\pm6$	$29\pm1\pm1\pm4$	$17 \pm 0.7 \pm 0.8 \pm 2.3$
8-9	$37\pm1\pm1\pm5$	$31\pm1\pm1\pm4$	$23\pm1\pm1\pm3$	$15.9 \pm 0.5 \pm 0.1 \pm 2.1$	$8.5 \pm 0.5 \pm 0.4 \pm 1.1$
9-10	$19.3 \pm 0.7 \pm 0.5 \pm 2.6$	$17.4 \pm 0.5 \pm 0.2 \pm 2.3$	$12.6 \pm 0.4 \pm 0.1 \pm 1.7$	$8.2 \pm 0.4 \pm 0.1 \pm 1.1$	$4.1 \pm 0.3 \pm 0.2 \pm 0.5$
10-11	$11.6 \pm 0.5 \pm 0.3 \pm 1.5$	$9.8 \pm 0.4 \pm 0.1 \pm 1.3$	$7.8 \pm 0.3 \pm 0.1 \pm 1.0$	$4.9 \pm 0.3 \pm 0.1 \pm 0.6$	$2.2\pm 0.2\pm 0.1\pm 0.3$
11-12	$6.7 \pm 0.4 \pm 0.2 \pm 0.9$	$5.9 \pm 0.3 \pm 0.1 \pm 0.8$	$4.5 \pm 0.3 \pm 0.1 \pm 0.6$	$2.6 \pm 0.2 \pm 0.1 \pm 0.3$	
12-13	$4.6 \pm 0.3 \pm 0.2 \pm 0.6$	$3.5 \pm 0.2 \pm 0.1 \pm 0.5$	$2.9 \pm 0.2 \pm 0.1 \pm 0.4$	$1.2\pm 0.1\pm 0.1\pm 0.2$	
13-14	$2.9 \pm 0.3 \pm 0.1 \pm 0.4$	$2.6 \pm 0.2 \pm 0.1 \pm 0.3$	$1.3\pm 0.2\pm 0.1\pm 0.2$		

LHCb
$$\frac{d^2\sigma}{dp_T dy}$$
, for no polarization

▲ ∃ ► ∃ = √Q ∩

$p_{\rm T}({\rm GeV}/c)$	2.0 < y < 2.5	2.5 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.0	4.0 < y < 4.5
0-1	$1282 \pm 83 \pm 266 \pm 169$	$1058 \pm 16 \pm 166 \pm 140$	$924\pm9\pm56\pm122$	$728 \pm 7 \pm 27 \pm 96$	$530\pm 6\pm 33\pm 70$
1-2	$1751 \pm 44 \pm 331 \pm 231$	$1791 \pm 15 \pm 47 \pm 236$	$1603 \pm 10 \pm 31 \pm 212$	$1246 \pm 8 \pm 26 \pm 164$	$902 \pm 7 \pm 31 \pm 119$
2-3	$1438 \pm 24 \pm 129 \pm 190$	$1423 \pm 11 \pm 28 \pm 188$	$1182 \pm 7 \pm 21 \pm 156$	$913 \pm 6 \pm 21 \pm 120$	$631 \pm 6 \pm 24 \pm 83$
3-4	$932 \pm 13 \pm 53 \pm 123$	$830 \pm 7 \pm 21 \pm 111$	$675 \pm 5 \pm 15 \pm 89$	$505 \pm 4 \pm 14 \pm 67$	$334\pm4\pm15\pm44$
4-5	$513 \pm 7 \pm 27 \pm 68$	$455 \pm 4 \pm 14 \pm 60$	$358 \pm 3 \pm 10 \pm 47$	$262\pm3\pm8\pm35$	$172\pm3\pm7\pm23$
5-6	$278 \pm 4 \pm 15 \pm 37$	220 1 2 1 0 1 22	$184\pm2\pm6\pm24$	$128\pm2\pm5\pm17$	$79\pm2\pm3\pm11$
6–7	$140\pm3\pm7\pm19$	$120\pm2\pm5\pm16$	$91\pm1\pm3\pm12$	$63\pm1\pm2\pm8$	$36\pm1\pm2\pm5$
7-8	$76\pm2\pm4\pm10$	$64\pm1\pm3\pm8$	$49\pm1\pm2\pm6$	$32\pm1\pm1\pm4$	$18.3 \pm 0.7 \pm 0.8 \pm 2.4$
8-9	$44\pm1\pm1\pm6$	$34\pm1\pm1\pm5$	$25\pm1\pm1\pm3$	$17.1 \pm 0.6 \pm 0.2 \pm 2.3$	$8.9 \pm 0.5 \pm 0.4 \pm 1.2$
9-10	$23\pm1\pm1\pm3$	$19.3 \pm 0.6 \pm 0.2 \pm 2.6$	$13.7 \pm 0.5 \pm 0.1 \pm 1.8$	$8.8 \pm 0.4 \pm 0.1 \pm 1.2$	$4.3 \pm 0.3 \pm 0.2 \pm 0.5$
10-11	$13.5 \pm 0.6 \pm 0.4 \pm 1.8$	$10.9 \pm 0.4 \pm 0.1 \pm 1.4$	$8.5 \pm 0.4 \pm 0.1 \pm 1.1$	$5.2 \pm 0.3 \pm 0.1 \pm 0.7$	$2.4 \pm 0.2 \pm 0.1 \pm 0.3$
11-12	$7.7 \pm 0.4 \pm 0.3 \pm 1.0$	$6.4 \pm 0.3 \pm 0.1 \pm 0.8$	$4.9 \pm 0.3 \pm 0.1 \pm 0.6$	$2.8 \pm 0.2 \pm 0.1 \pm 0.4$	
12-13	$5.2 \pm 0.3 \pm 0.2 \pm 0.7$	$3.8 \pm 0.3 \pm 0.1 \pm 0.5$	$3.1 \pm 0.2 \pm 0.1 \pm 0.4$	$1.3\pm 0.1\pm 0.1\pm 0.2$	
13-14	$3.3 \pm 0.3 \pm 0.1 \pm 0.4$	$2.8 \pm 0.2 \pm 0.1 \pm 0.4$	$1.4\pm 0.2\pm 0.1\pm 0.2$		

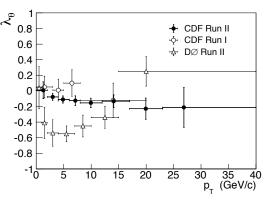
LHCb $\frac{d^2\sigma}{dp\tau dy}$, for transverse polarization


$p_{\rm T}({\rm GeV}/c)$	2.0 < y < 2.5	2.5 < y < 3.0	3.0 < y < 3.5	3.5 < y < 4.0	4.0 < y < 4.5
0-1	$839 \pm 54 \pm 174 \pm 111$	$601\pm9\pm94\pm79$	$543\pm5\pm33\pm72$	$468\pm4\pm21\pm62$	$341\pm4\pm21\pm45$
1-2	$1157 \pm 29 \pm 219 \pm 153$	$1114 \pm 9 \pm 29 \pm 147$	$1073 \pm 7 \pm 21 \pm 142$	$892 \pm 5 \pm 18 \pm 118$	$667 \pm 6 \pm 23 \pm 88$
2-3	$945 \pm 16 \pm 84 \pm 125$	$938 \pm 7 \pm 19 \pm 124$	$865 \pm 5 \pm 16 \pm 114$	$721\pm5\pm16\pm95$	$517\pm5\pm20\pm68$
3-4	$583 \pm 8 \pm 33 \pm 77$	$559 \pm 4 \pm 14 \pm 74$	$514\pm4\pm11\pm68$	$415\pm3\pm12\pm55$	$282 \pm 4 \pm 13 \pm 37$
4–5	$315\pm4\pm16\pm42$	$307 \pm 3 \pm 9 \pm 41$	$274\pm2\pm8\pm36$	$215\pm2\pm7\pm28$	$148\pm2\pm6\pm20$
5-6	$171\pm3\pm9\pm23$	1/2 1 2 1 / 1 22	$140\pm2\pm4\pm19$	$104\pm1\pm4\pm14$	$69\pm2\pm3\pm9$
6–7	$87\pm2\pm5\pm12$	$83\pm1\pm3\pm11$	$70\pm1\pm3\pm9$	$51\pm1\pm2\pm7$	$31\pm1\pm1\pm4$
7-8	$48\pm1\pm2\pm6$	$46\pm1\pm2\pm6$	$38\pm1\pm1\pm5$	$26\pm1\pm1\pm3$	$15.8 \pm 0.6 \pm 0.7 \pm 2.1$
8-9	$29\pm1\pm1\pm4$	$25\pm1\pm1\pm3$	$19.8 \pm 0.5 \pm 0.1 \pm 2.6$	$13.9 \pm 0.5 \pm 0.1 \pm 1.8$	$7.6 \pm 0.4 \pm 0.3 \pm 1.0$
9-10	$14.9 \pm 0.5 \pm 0.4 \pm 2.0$	$14.5 \pm 0.4 \pm 0.2 \pm 1.9$	$10.8 \pm 0.4 \pm 0.1 \pm 1.4$	$7.1\pm 0.3\pm 0.1\pm 0.9$	$3.6 \pm 0.3 \pm 0.2 \pm 0.5$
10-11	$9.1 \pm 0.4 \pm 0.3 \pm 1.2$	$8.3 \pm 0.3 \pm 0.1 \pm 1.1$	$6.7\pm 0.3\pm 0.1\pm 0.9\ 1011$	$4.3 \pm 0.2 \pm 0.1 \pm 0.6$	$2.0\pm 0.2\pm 0.1\pm 0.3$
11-12	$5.3 \pm 0.3 \pm 0.2 \pm 0.7$	$5.0 \pm 0.3 \pm 0.1 \pm 0.7$	$4.0 \pm 0.2 \pm 0.1 \pm 0.5$	$2.3 \pm 0.2 \pm 0.1 \pm 0.3$	
12-13	$3.7\pm 0.2\pm 0.1\pm 0.5$	$3.0 \pm 0.2 \pm 0.1 \pm 0.4$	$2.5 \pm 0.2 \pm 0.1 \pm 0.4$	$1.0\pm 0.1\pm 0.1\pm 0.1$	
13-14	$2.3 \pm 0.2 \pm 0.1 \pm 0.3$	$2.3 \pm 0.2 \pm 0.1 \pm 0.3$	$1.2\pm 0.1\pm 0.1\pm 0.2$		

LHCb $\frac{d^2\sigma}{d\sigma\tau dv}$, for longitudinal polarization

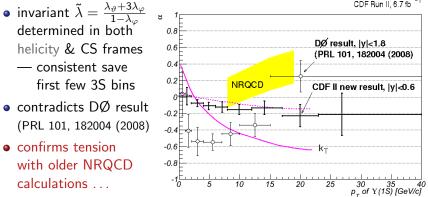
Polarization (5): measurement for $\Upsilon(nS)$ at CDF CDF: Physical Review Letters 108, 151802 (2012)

from 6.7 fb⁻¹ in Run II: {550k, 150k, 76k} $\Upsilon(1S, 2S, 3S)$ events


• invariant $\tilde{\lambda} = \frac{\lambda_{\vartheta} + 3\lambda_{\varphi}}{1 - \lambda_{\varphi}}$ determined in both helicity & CS frames — consistent save first few 3S bins

Polarization (5): measurement for $\Upsilon(nS)$ at CDF CDF: Physical Review Letters 108, 151802 (2012)

from 6.7 fb⁻¹ in Run II: {550k, 150k, 76k} $\Upsilon(1S, 2S, 3S)$ events


- invariant $\tilde{\lambda} = \frac{\lambda_{\vartheta} + 3\lambda_{\varphi}}{1 \lambda_{\varphi}}$ determined in both helicity & CS frames — consistent save first few 3S bins
- contradicts DØ result (PRL 101, 182004 (2008))

5 - SQC

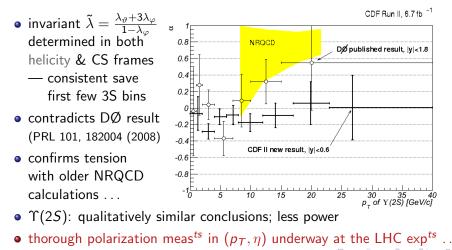
Polarization (5): measurement for $\Upsilon(nS)$ at CDF CDF: Physical Review Letters 108, 151802 (2012)

from 6.7 fb⁻¹ in Run II: {550k, 150k, 76k} $\Upsilon(1S, 2S, 3S)$ events

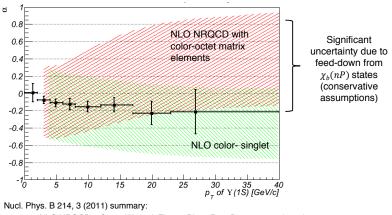
CDF Run II. 6.7 fb ⁻¹

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● Q @

Polarization (5): measurement for $\Upsilon(nS)$ at CDF CDF: Physical Review Letters 108, 151802 (2012)


from 6.7 fb⁻¹ in Run II: {550k, 150k, 76k} $\Upsilon(1S, 2S, 3S)$ events

• $\Upsilon(2S)$: qualitatively similar conclusions; less power


Polarization (5): measurement for $\Upsilon(nS)$ at CDF CDF: Physical Review Letters 108, 151802 (2012)

from 6.7 fb⁻¹ in Run II: {550k, 150k, 76k} $\Upsilon(1S, 2S, 3S)$ events

Bruce Yabsley (Sydney / CoEPP)

Polarization (5): measurement for $\Upsilon(nS)$ at CDF CDF: from Matthew Jones' presentation 2012/03/02 @ Fermilab

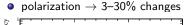
calculations have since moved on ...

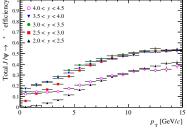
- NLO NRQCD Gong, Wang & Zhang, Phys. Rev. D83, 114021 (2011)
- Color-singlet NLO and NNLO* Artoisenet, et al. Phys. Rev. Lett. 101, 152001 (2008)

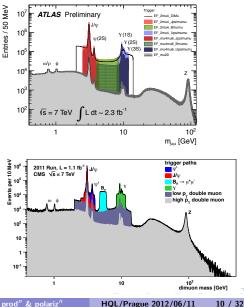
-

performance

Performance: reconstruction of basic samples

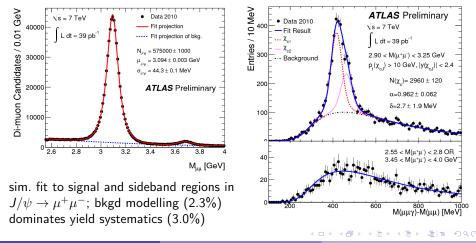

CENTRAL experiments: \rightarrow


triggers on $\mu(\mu)$ with high- p_T , low- p_T threshold, & $M(\mu\mu)$ -restricted-samples


- increasing $\mathcal{L} \rightarrow \text{higher-}p_T$ triggers
- p_{τ}^{μ} -dependence \rightarrow acceptance $\mathcal{A}^{\psi,\Upsilon}(p_T, y)$ polarization-dependent

FORWARD (LHCb): \downarrow

• ϵ reduced at low- & high-y

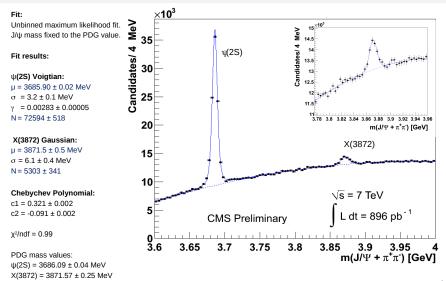


performance

Performance: reconstruction of higher states ATLAS $\chi_{cJ}(1P)$ observation: ATLAS-CONF-2011-136

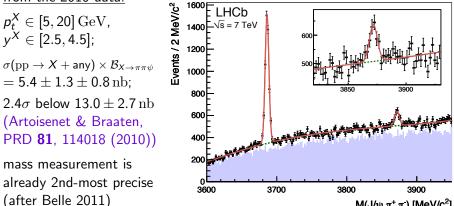

from the 2010 data:
$$p_t^{\chi} > 10 \, {
m GeV}$$
, $|y^{\chi}| < 2.4; \, \cos(\Phi_{(\psi,\gamma)}^{lab}) > 0.99$

Bruce Yabsley (Sydney / CoEPP)


Quarkonium prodⁿ & polarizⁿ

Performance: reconstruction of higher states CMS X(3872) & ψ (2S) production ratio: BPH-10-018-PAS

performance

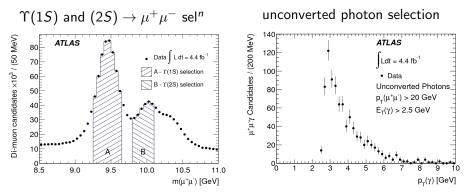

Performance: reconstruction of higher states CMS X(3872) observation, & $\psi(2S)$: DPS-2011/009

Bruce Yabsley (Sydney / CoEPP)

Performance: reconstruction of higher states LHCb X(3872) production: EPJC 72, 1972 (2012) {arXiv:1112.5310v1 [hep-ex]}

from the 2010 data:

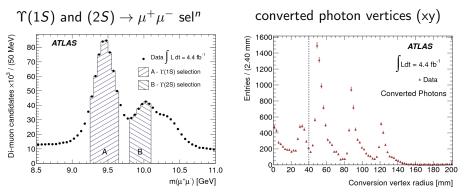
M(J/ψ π⁺ π) [MeV/c²]


14 / 32

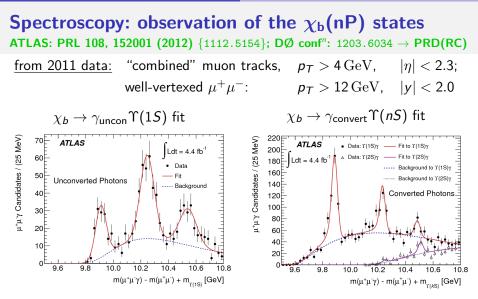
 $m_X = 3871.95 \pm 0.48 \,(\text{stat.}) \pm 0.12 \,(\text{syst.}) \,\mathrm{MeV}/c^2$

cf. WA = $3871.71 \pm 0.19 \,\mathrm{MeV}/c^2$ (private, from QWG2011/Darmstadt)

spectroscopy

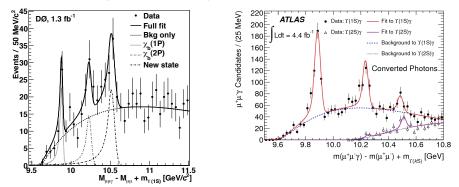


▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○


spectroscopy

∃ ► < ∃ ► ∃ = < < <</p>

spectroscopy



▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

DØ confirmation (also conversions)

 $\chi_b \to \gamma_{\text{convert}} \Upsilon(nS)$ fit

spectroscopy

Spectroscopy: first observation of the $\chi_{\rm bl}(3P)$ ATLAS: PRL 108, 152001 (2012) {1112.5154}; DØ confⁿ: 1203.6034 \rightarrow PRD(RC)

 $\chi_b(3P)$ significance > 6 σ in each sample; for the photon conversions:

- $\chi_{b0} \rightarrow \gamma \Upsilon$ suppressed: omitted
- $\chi_{b1,b2}(1P,2P)$ fixed to WA
- $\chi_{b1,b2}(3P)$ splitting = 12 MeV assumed

r(2S) 10 $\chi_b(3P)$ barycenter \tilde{m}_3 determination: χ. (1P World calo. $10.541 \pm 0.011 \pm 0.030 \, {
m GeV}$ Mass barycentre 9.8 averages conv^{ns} $10.530 \pm 0.005 \pm 0.009 \, {
m GeV}$ 9.6 predicted 10.525 r(1S) (PRD 36, 3401 (1987); 38, 279 (1988); EPJC 4, 107 (1998)) 9.4 $(0,1,2)^{++}$ there will be indirect $\Upsilon(3S)$ production ! 9.2

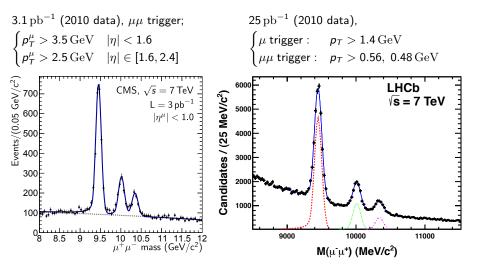
Observed bottomonium radiative decays in ATLAS. L = 4.4 fb¹

χ. (2P

Mass barycentre

ATLAS

r(4S)

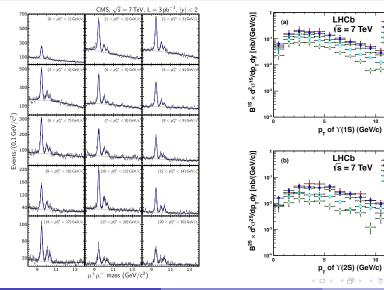

r(3S)

mode

World averages $\Upsilon(nS)$

Differential cross-sections: $\Upsilon(nS)$

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}



▲ ∃ ► ∃ = √ < ∩</p>

 $\Upsilon(nS)$

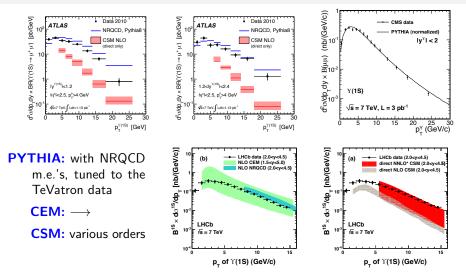
Differential cross-sections: $\Upsilon(nS)$

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}

Bruce Yabsley (Sydney / CoEPP)

4.0 < y < 4.5

15

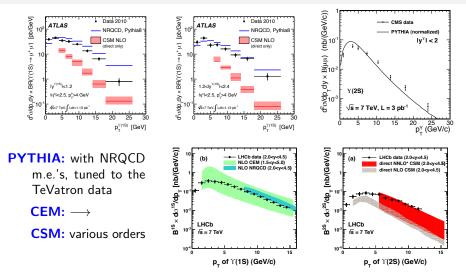

-

18 / 32

 $\Upsilon(nS)$

Differential cross-sections: $\Upsilon(nS)$

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}

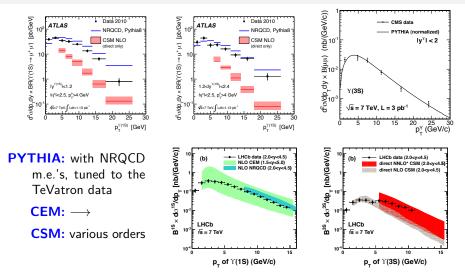

< 口 > < 同 >

ELE DOG

 $\Upsilon(nS)$

Differential cross-sections: $\Upsilon(nS)$

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}

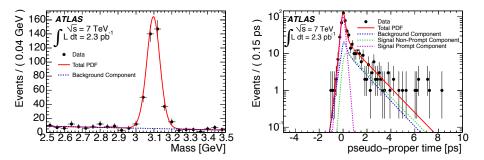

< 口 > < 同 >

ELE DOG

 $\Upsilon(nS)$

Differential cross-sections: $\Upsilon(nS)$

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}

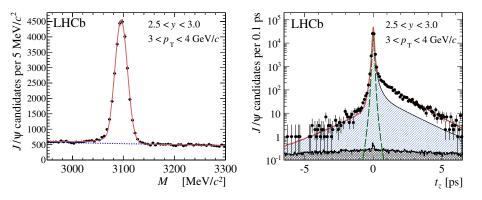

< 口 > < 同 >

ELE DOG

Differential cross-sections: J/ψ

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}

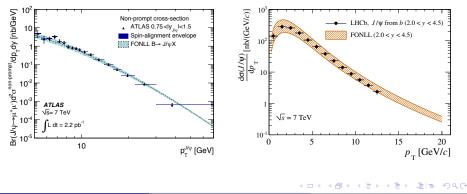
- complication: non-prompt fraction, $\{\mathrm{B}^{\pm}, \, \mathrm{B}^{0}_{(s)}, \, \Lambda_{b}\} \rightarrow J/\psi \, X$
- use J/ψ as a proxy for the *b*-hadron: 2D UML fit to $M(\mu\mu)$ and *pseudo-proper time* $\tau = L_{xy}.m^{\psi}/p_T^{\psi}$


▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

Differential cross-sections: J/ψ

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004; LHCb: acc. EPJC {1202.6579v1}

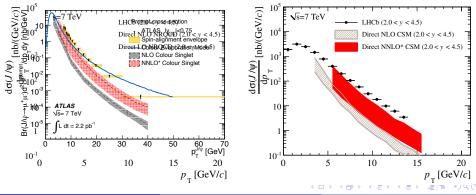
complication: non-prompt fraction, {B[±], B⁰_(s), Λ_b} → J/ψ X
use J/ψ as a proxy for the b-hadron:

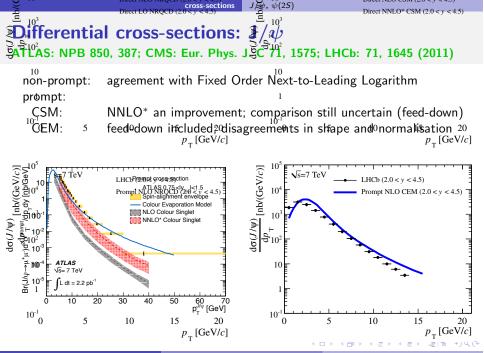

2D UML fit to $M(\mu\mu)$ and pseudo-proper time $au = L_z.m^\psi/p_z^\psi$

Differential cross-sections: J/ψ

ATLAS: NPB 850, 387; CMS: Eur. Phys. J. C 71, 1575; LHCb: 71, 1645 (2011)

non-prompt: agreement with Fixed Order Next-to-Leading Logarithm



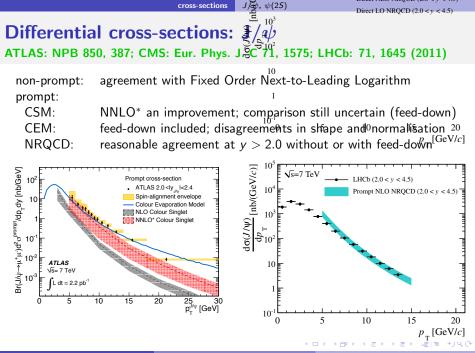

Differential cross-sections: J/ψ

ATLAS: NPB 850, 387; CMS: Eur. Phys. J. C 71, 1575; LHCb: 71, 1645 (2011)

non-prompt: agreement with Fixed Order Next-to-Leading Logarithm prompt:

CSM: NNLO* an improvement; comparison still uncertain (feed-down)

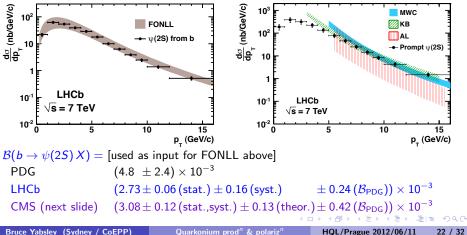
Bruce Yabsley (Sydney / CoEPP)


Differential cross-sections: J/ψ

ATLAS: NPB 850, 387; CMS: Eur. Phys. J. C 71, 1575; LHCb: 71, 1645 (2011)

non-prompt: agreement with Fixed Order Next-to-Leading Logarithm prompt:

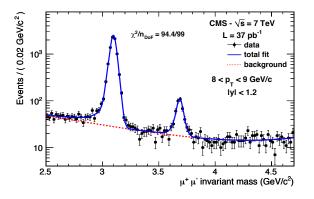
CSM: NNLO* an improvement; comparison still uncertain (feed-down) CEM: feed-down included; disagreements in shape and normalisation NRQCD: reasonable agreement at y > 2.0 without feed-down


Differential cross-sections: $\psi(2S)$ — feed-down free

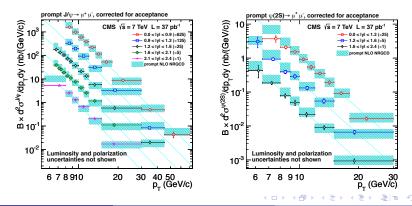
LHCb: to be published in Eur. Phys. J. C {arXiv:1204.1258v1 [hep-ex]}; see ref's

described well by Fixed Order NLL non-prompt:

prompt:

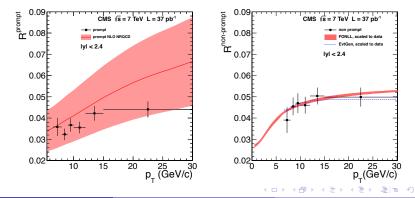

color-singlet reasonable at partial NNLO, save high p_T singlet+octet at NLO agrees; less well at low p_T

Quarkonium prodⁿ & polarizⁿ HQL/Prague 2012/06/11

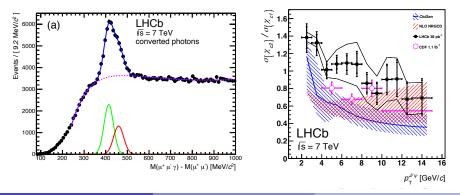

Differential cross-sections: J/ψ and $\psi(2S)$ CMS: JHEP 02, 011 (2012) {arXiv:1111.1557v1 [hep-ex]}

 simultaneous fits, with constraints on relationship of parameters; partial cancellation of experimental and theoretical uncertainties

Differential cross-sections: J/ψ and $\psi(2S)$ CMS: JHEP 02, 011 (2012) {arXiv:1111.1557v1 [hep-ex]}

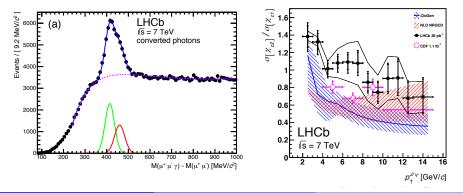

- simultaneous fits, with constraints on relationship of parameters; partial cancellation of experimental and theoretical uncertainties
- prompt *cf.* NLO NRQCD: large uncert^s \ni feed-down; TeVatron CO m.e.'s

Bruce Yabsley (Sydney / CoEPP)

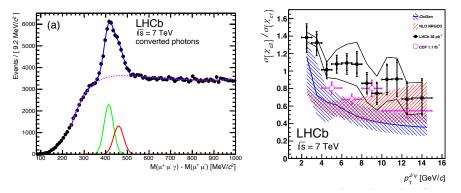

Differential cross-sections: J/ψ and $\psi(2S)$ CMS: JHEP 02, 011 (2012) {arXiv:1111.1557v1 [hep-ex]}

- simultaneous fits, with constraints on relationship of parameters; partial cancellation of experimental and theoretical uncertainties
- prompt *cf.* NLO NRQCD: large uncert^s \ni feed-down; TeVatron CO m.e.'s
- extra $\Delta R_{\text{prompt}} = 12-20\%$, uncert^y in χ_{cJ} polarizⁿ; non-prompt *cf*. FONLL

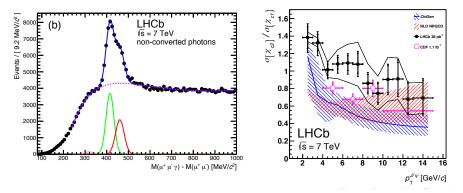
LHCb prompt χ_{c2} to χ_{c1} cross-section ratio to be published in Physics Letters B {arXiv:1202.1080v1 [hep-ex]}


ratio is sensitive to color singlet / octet mechanisms

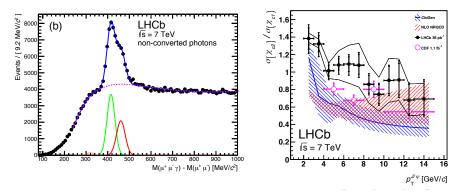
LHCb prompt χ_{c2} to χ_{c1} cross-section ratio to be published in Physics Letters B {arXiv:1202.1080v1 [hep-ex]}


ratio is sensitive to color singlet / octet mechanisms

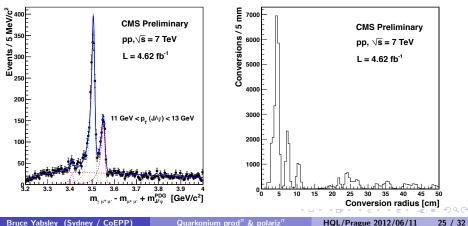
• 36 pb^{-1} (2010 data); $y^{\psi} \in [2.0, 4.5]$, $\rho_T^{\psi} \in [2, 15] \text{ GeV}$; $\tau^{\psi} < 0.1 \text{ ps}$


LHCb prompt χ_{c2} to χ_{c1} cross-section ratio to be published in Physics Letters B {arXiv:1202.1080v1 [hep-ex]}

- ratio is sensitive to color singlet / octet mechanisms
- 36 pb⁻¹ (2010 data); $y^{\psi} \in [2.0, 4.5]$, $\rho_T^{\psi} \in [2, 15]$ GeV; $\tau^{\psi} < 0.1$ ps
- photons: $p_T^{\gamma} > 650 \,\mathrm{MeV}$, $p^{\gamma} > 5 \,\mathrm{GeV}$, \mathcal{L} cuts; converted

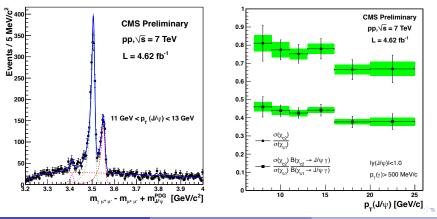

LHCb prompt χ_{c2} to χ_{c1} cross-section ratio to be published in Physics Letters B {arXiv:1202.1080v1 [hep-ex]}

- ratio is sensitive to color singlet / octet mechanisms
- 36 pb⁻¹ (2010 data); $y^{\psi} \in [2.0, 4.5]$, $\rho_T^{\psi} \in [2, 15]$ GeV; $\tau^{\psi} < 0.1$ ps
- photons: $p_T^{\gamma} > 650 \,\mathrm{MeV}$, $p^{\gamma} > 5 \,\mathrm{GeV}$, \mathcal{L} cuts; converted and not


LHCb prompt χ_{c2} to χ_{c1} cross-section ratio to be published in Physics Letters B {arXiv:1202.1080v1 [hep-ex]}

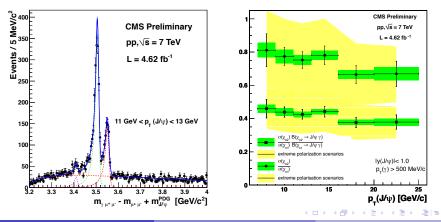
- ratio is sensitive to color singlet / octet mechanisms
- 36 pb⁻¹ (2010 data); $y^{\psi} \in [2.0, 4.5]$, $\rho_T^{\psi} \in [2, 15]$ GeV; $\tau^{\psi} < 0.1$ ps
- photons: $p_T^{\gamma} > 650 \, {
 m MeV}$, $p^{\gamma} > 5 \, {
 m GeV}$, ${\cal L}$ cuts; converted and not
- disagreement with LO CSM and NLO NRQCD > polⁿ uncertainty

CMS prompt χ_{c2}/χ_{c1} cross-section ratio CMS-PAS-BPH-11-010, 4.6 fb^{-1} ; presented by S. Argirò at Blois 2012


• $\chi_{c1,c2} \rightarrow \gamma_{\text{convert}} J/\psi; |y^{\psi}| < 1.0, \ p_T^{\gamma} > 0.5 \,\text{GeV}/c; \ I_{J/\psi} < 30 \,\mu\text{m}$

Bruce Yabsley (Sydney / CoEPP)

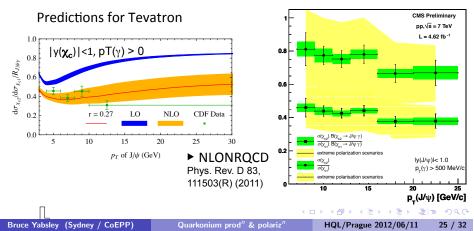
CMS prompt χ_{c2}/χ_{c1} cross-section ratio CMS-PAS-BPH-11-010, 4.6 fb⁻¹; presented by S. Argirò at Blois 2012

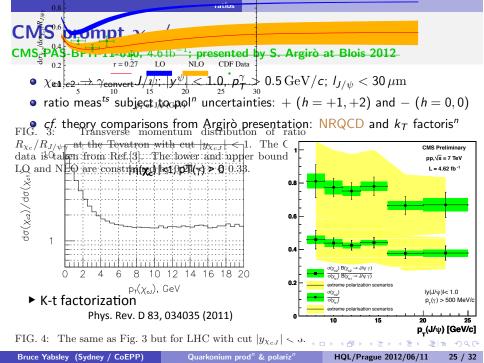

- $\chi_{c1,c2} \to \gamma_{\text{convert}} J/\psi; \ |y^{\psi}| < 1.0, \ p_T^{\gamma} > 0.5 \,\text{GeV}/c; \ I_{J/\psi} < 30 \,\mu\text{m}$
- ratio meas^{ts}

Bruce Yabsley (Sydney / CoEPP)

CMS prompt χ_{c2}/χ_{c1} cross-section ratio CMS-PAS-BPH-11-010, 4.6 fb⁻¹; presented by S. Argirò at Blois 2012

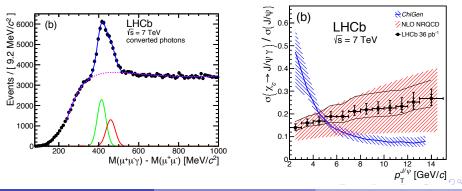
- $\chi_{c1,c2} \rightarrow \gamma_{\text{convert}} J/\psi; \ |y^{\psi}| < 1.0, \ p_T^{\gamma} > 0.5 \,\text{GeV}/c; \ I_{J/\psi} < 30 \,\mu\text{m}$
- ratio meas^{ts} subject to polⁿ uncertainties: +(h = +1, +2) and -(h = 0, 0)


Bruce Yabsley (Sydney / CoEPP)

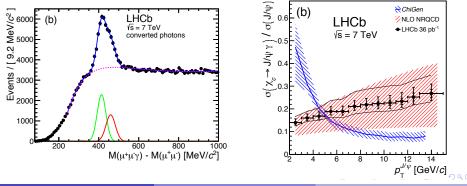

Quarkonium prodⁿ & polarizⁿ

HQL/Prague 2012/06/11 25 / 32

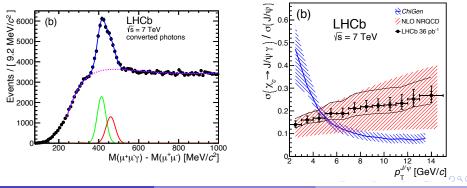
CMS prompt χ_{c2}/χ_{c1} cross-section ratio CMS-PAS-BPH-11-010, 4.6 fb⁻¹; presented by S. Argirò at Blois 2012


- $\chi_{c1,c2} \rightarrow \gamma_{\text{convert}} J/\psi; \ |y^{\psi}| < 1.0, \ p_T^{\gamma} > 0.5 \,\text{GeV}/c; \ I_{J/\psi} < 30 \,\mu\text{m}$
- ratio meas^{ts} subject to polⁿ uncertainties: + (h = +1, +2) and (h = 0, 0)
- cf. theory comparisons from Argirò presentation: NRQCD

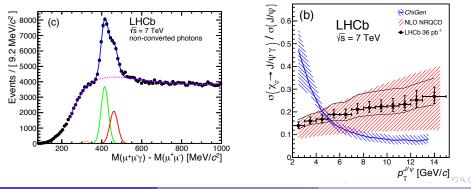
LHCb prompt χ_c to J/ψ cross-section ratio submitted to Physics Letters B {arXiv:1204.1462v1 [hep-ex]}


ratio is another test of color singlet / octet mechanisms

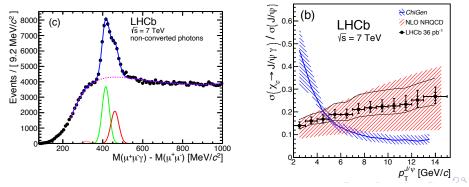
LHCb prompt χ_c to J/ψ cross-section ratio submitted to Physics Letters B {arXiv:1204.1462v1 [hep-ex]}


ratio is another test of color singlet / octet mechanisms

• 36 pb⁻¹ (2010);
$$y^{\psi} \in [2.0, 4.5], \ p_T^{\psi} \in [2, 15] \text{ GeV}; \ \tau^{\psi} \Big|_{\chi_c} < 0.1 \text{ ps}$$


LHCb prompt χ_c to J/ψ cross-section ratio submitted to Physics Letters B {arXiv:1204.1462v1 [hep-ex]}

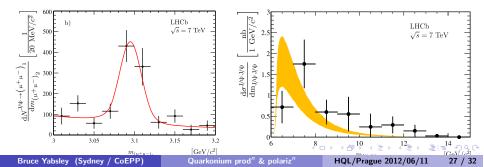
- ratio is another test of color singlet / octet mechanisms
- 36 pb⁻¹ (2010); $y^{\psi} \in [2.0, 4.5]$, $p_T^{\psi} \in [2, 15]$ GeV; $\tau^{\psi} |_{\chi_c} < 0.1$ ps
- photons: $p_T^{\gamma} > 650 \, {
 m MeV}$, $p^{\gamma} > 5 \, {
 m GeV}$, ${\cal L}$ cuts; converted


LHCb prompt χ_c to J/ψ cross-section ratio submitted to Physics Letters B {arXiv:1204.1462v1 [hep-ex]}

- ratio is another test of color singlet / octet mechanisms
- 36 pb⁻¹ (2010); $y^{\psi} \in [2.0, 4.5]$, $p_T^{\psi} \in [2, 15]$ GeV; $\tau^{\psi} |_{\chi_c} < 0.1$ ps
- photons: $p_T^\gamma > 650\,{
 m MeV}$, $p^\gamma > 5\,{
 m GeV}$, ${\cal L}$ cuts; converted and not

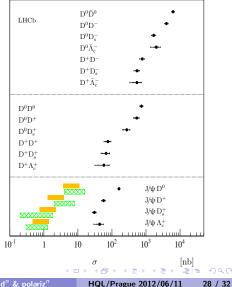

LHCb prompt χ_c to J/ψ cross-section ratio submitted to Physics Letters B {arXiv:1204.1462v1 [hep-ex]}

- ratio is another test of color singlet / octet mechanisms
- 36 pb⁻¹ (2010); $y^{\psi} \in [2.0, 4.5]$, $p_T^{\psi} \in [2, 15]$ GeV; $\tau^{\psi} |_{\chi_c} < 0.1$ ps
- photons: $p_T^{\gamma} > 650 \, {
 m MeV}$, $p^{\gamma} > 5 \, {
 m GeV}$, ${\cal L}$ cuts; converted and not
- data $\pm \sigma_{pol}^{\pm}$ within NLO NRQCD uncert^y; disagrees with LO CSM


LHCb J/ ψ pair production observation Physics Letters B 707, 52 (2012) {arXiv:1109.0963v2 [hep-ex]}

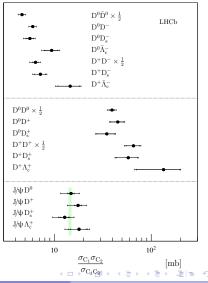
- almost unknown (NA3 result only); depends strongly on prodⁿ process
- 37.5 pb^{-1} (2010); $\rho_T^\mu > 650\,\mathrm{MeV}$, fit-quality and $\mathcal L$ cuts
- fit of $\mu^+\mu^-\mu^+\mu^-$ to good common vtx, consistent with a pp collision vtx
- yield of low- p_T pair fit in bins of high- p_T pair mass,

LHCb J/ ψ pair production observation Physics Letters B 707, 52 (2012) {arXiv:1109.0963v2 [hep-ex]}


- almost unknown (NA3 result only); depends strongly on prodⁿ process
- 37.5 pb^{-1} (2010); $\rho_{\mathcal{T}}^{\mu} > 650\,\mathrm{MeV},$ fit-quality and $\mathcal L$ cuts
- fit of $\mu^+\mu^-\mu^+\mu^-$ to good common vtx, consistent with a pp collision vtx
- yield of low- p_T pair fit in bins of high- p_T pair mass, then ϵ -corrected
- $\sigma_{\psi\psi}/\sigma_{\psi} = (5.1 \pm 1.0_{(\text{stat.})} \pm 0.6_{(\text{syst.})-1.0} (\text{pol}^n)) \times 10^{-4}$, ~ LO color singlet
- further tests with more data; sensitive to double parton scattering (DPS)

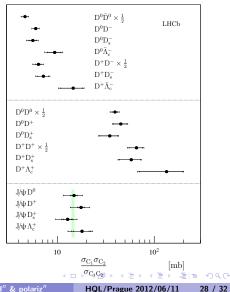
LHCb double charm production

to be published in JHEP {arXiv:1205.0975v1 [hep-ex]}


- $\sigma_{DPS}(C_1C_2) \sim \sigma(C_1)\sigma(C_2)/\sigma_{DPS}^{eff}$; \exists TeVatron fit for σ_{DPS}^{eff}
- can also arise from intrinsic charm
- LO calculations available for $gg \rightarrow J/\psi J/\psi$, $J/\psi c\overline{c}$, $c\overline{c} c\overline{c}$
- 355 pb⁻¹ of 2011 data: greatly exceed two LO models

LHCb double charm production

to be published in JHEP {arXiv:1205.0975v1 [hep-ex]}


- $\sigma_{DPS}(C_1C_2) \sim \sigma(C_1)\sigma(C_2)/\sigma_{DPS}^{eff}$; \exists TeVatron fit for σ_{DPS}^{eff}
- can also arise from intrinsic charm
- LO calculations available for $gg \rightarrow J/\psi J/\psi$, $J/\psi c\overline{c}$, $c\overline{c} c\overline{c}$
- 355 pb⁻¹ of 2011 data: greatly exceed two LO models
- rate consistent with DPS

LHCb double charm production

to be published in JHEP {arXiv:1205.0975v1 [hep-ex]}

- $\sigma_{DPS}(C_1C_2) \sim \sigma(C_1)\sigma(C_2)/\sigma_{DPS}^{eff};$ \exists TeVatron fit for σ_{DPS}^{eff}
- can also arise from *intrinsic charm*
- LO calculations available for $gg \rightarrow J/\psi J/\psi, J/\psi c\overline{c}, c\overline{c} c\overline{c}$
- 355 pb^{-1} of 2011 data: greatly exceed two LO models
- rate consistent with DPS
- support from: lack of y and ϕ correlations
- complication: $C\overline{C}$ results
- rich set of observables

Bruce Yabsley (Sydney / CoEPP)

• quarkonium production and polarization is still a challenge for theory

< 🗇 🕨

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood

■▶ ▲ ■ ▶ ■ ■ ■ ● ● ● ●

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed

< = > < = > = = < < < <

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is *in situ* measurement of the polarization:

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is in situ measurement of the polarization:
 - now underway at the experiments; practical with vast samples

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is *in situ* measurement of the polarization:
 - now underway at the experiments; practical with vast samples
 - modern analysis of CDF data is available now

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is in situ measurement of the polarization:
 - now underway at the experiments; practical with vast samples
 - modern analysis of CDF data is available now
- active quarkonium programme underway at LHC experiments, based on large $\{J/\psi,\,\Upsilon\}\to\mu^+\mu^-$ samples

> < = > < = > = = = < < <

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is in situ measurement of the polarization:
 - now underway at the experiments; practical with vast samples
 - modern analysis of CDF data is available now
- active quarkonium programme underway at LHC experiments, based on large $\{J/\psi, \, \Upsilon\} \to \mu^+\mu^-$ samples
- early spectroscopic results: X(3872) studies, $\chi_b(3P)$ observation

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\omega}, \lambda_{\vartheta \omega})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is *in situ* measurement of the polarization:
 - now underway at the experiments; practical with vast samples
 - modern analysis of CDF data is available now
- active quarkonium programme underway at LHC experiments, based on large $\{J/\psi, \Upsilon\} \rightarrow \mu^+\mu^-$ samples
- early spectroscopic results: X(3872) studies, $\chi_b(3P)$ observation
- first differential cross-sections are available; compared to theory

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is in situ measurement of the polarization:
 - now underway at the experiments; practical with vast samples
 - modern analysis of CDF data is available now
- active quarkonium programme underway at LHC experiments, based on large $\{J/\psi,\,\Upsilon\}\to\mu^+\mu^-$ samples
- early spectroscopic results: X(3872) studies, $\chi_b(3P)$ observation
- first differential cross-sections are available; compared to theory
- the future σ -ratio, more rich final state measurements is here

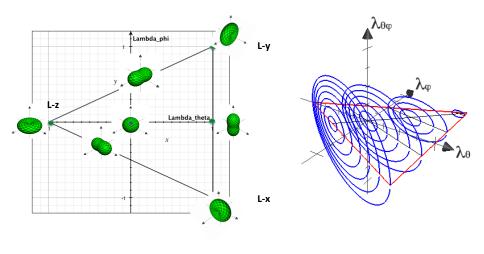
◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ●□ ● ● ●

- quarkonium production and polarization is still a challenge for theory
- subtleties of polarization treatment now more widely understood
 - careful definition of *frame* and use of full $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ needed
 - more sophisticated treatment of exp¹ acceptance now standard
 - uncertainty due to unknown polarization now standard
- the ideal is in situ measurement of the polarization:
 - now underway at the experiments; practical with vast samples
 - modern analysis of CDF data is available now
- active quarkonium programme underway at LHC experiments, based on large $\{J/\psi,\,\Upsilon\}\to\mu^+\mu^-$ samples
- early spectroscopic results: X(3872) studies, $\chi_b(3P)$ observation
- first differential cross-sections are available; compared to theory
- the future σ -ratio, more rich final state measurements is here
- higher-order calculations raised the CSM to new life; data is challenging it, and color octet ... nowhere to hide!

Bruce Yabsley (Sydney / CoEPP)

EL SQC

BACKUP


BACKUP SLIDES

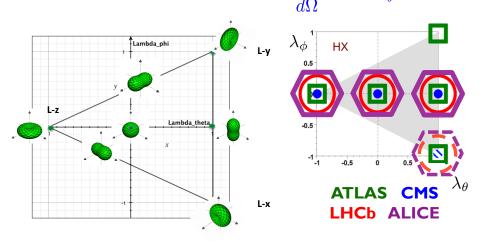
Bruce Yabsley (Sydney / CoEPP)

Quarkonium prodⁿ & polarizⁿ

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のの⊙ HQL/Prague 2012/06/11

Relation between $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ in different frames Sandro Palestini, Physical Review D 83, 031503(R) (2011)

Bruce Yabsley (Sydney / CoEPP)

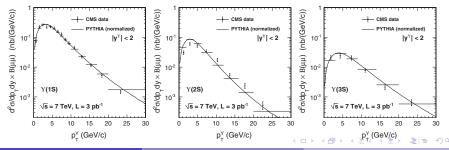

Quarkonium prodⁿ & polarizⁿ

 < □</td>
 < □</td>
 < □</td>
 □
 □

 HQL/Prague 2012/06/11

ELE DOG

Relation between $(\lambda_{\vartheta}, \lambda_{\varphi}, \lambda_{\vartheta\varphi})$ in different frames Sandro Palestini, Physical Review D 83, 031503(R) (2011) $\frac{d\Omega}{d\Omega} = 1 + \lambda_{\theta^*} \cos^2 \theta^* + \lambda$


31 / 32

ELE DOG

Differential cross-sections: $\Upsilon(nS)$

ATLAS: PLB 705, 9-27; CMS: PRD 83, 112004 (2011); LHCb: 1202.6579v1

"Upsilon events are simulated using PYTHIA 6.412, which generates events based on the leading-order color-singlet and octet mechanisms, with nonrelativistic QCD matrix elements tuned by comparing calculations with the CDF data and applying the normalization and wave-functions as recommended in [M. Krämer, Prog. Part. Nucl. Phys. **47**, 141 (2001)] The simulation includes the generation of χ_b states. Final-state radiation (FSR) is implemented using PHOTOS. The response of the CMS detector is simulated with a GEANT4-based [15] Monte Carlo (MC) program. Simulated events are processed with the same reconstruction algorithms as used for data ... The normalized p_T -spectrum prediction from PYTHIA is consistent with the measurements, while the integrated cross section is overestimated by about a factor of 2."

Bruce Yabsley (Sydney / CoEPP)

Quarkonium prodⁿ & polarizⁿ

HQL/Prague 2012/06/11 32 / 32