# Rare heavy flavour

# decays at LHCb

Flavio Archilli(\*) on behalf of the LHCb collaboration (\*) Laboratori Nazionali di Frascati - INFN

#### Heavy Quarks and Leptons 2012

June 11th-15th, 2012, Prague, Czech Republic





## Introduction

FCNC process prohibited at the tree level in the SM

Rare B and D decays can access to NP through new virtual particles



Hadronic weak decays studied in terms of effective Hamiltonian of local operator O<sub>i</sub>

$$H_{eff} \propto \sum_i C_i \mathcal{O}_i$$

▶ NP could modify C<sub>i</sub> short distance Wilson coefficient

| =1,2   | Tree                   |  |  |
|--------|------------------------|--|--|
| =3-6,8 | Gluon Penguin          |  |  |
| =7     | Photon penguin         |  |  |
| =9,10  | Electroweak penguin    |  |  |
| =S     | Higgs (scalar) penguii |  |  |
| =P     | Pseudoscalar penguin   |  |  |

### Outline

- Rare leptonic decays:
  - $B_{d,s} \rightarrow \mu^+ \mu^-$
  - $D^0 \to \mu^+ \mu^-$
  - $B_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Rare semi-leptonic decays:
  - $B^0 \rightarrow K^{*0} \ \mu^+\mu^-$  (angular analysis)
  - $B \to K^{(*)} \ \mu^+\mu^-$  (isospin asymmetry)
  - $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

 $B_{d,s} \rightarrow \mu^+ \mu^-$  is the best way for LHCb to constrain the parameters of the extended Higgs sector in MSSM, fully complementary to direct searches

Double suppressed decay: helicity and FCNC  $\rightarrow$  very small BR in SM and well predicted:  $BR(B_s \rightarrow \mu^+ \mu^-) = (3.2 \pm 0.2) \times 10^{-9}$   $BR(B_d \rightarrow \mu^+ \mu^-) = (1.0 \pm 0.1) \times 10^{-10}$ [A. Buras *et al.*, JHEP 1010 (2010)]  $\rightarrow$  sensitive to NP effects in

scalar/pseudoscalar Higgs sector (C<sub>S</sub>, C<sub>P</sub>): in MSSM large tanß approximation  $BR(B_{d,s} \rightarrow \mu^+\mu^-) \propto tan^6\beta/M^4_A$ 



## $B^{0}_{s} \rightarrow \mu^{+}\mu^{-}$ : experimental status (Feb. 2012)



## Analysis strategy

[Phys. Rev. Lett. 108, 231801 (2012)]

- Blind analysis on 1fb<sup>-1</sup> of data collected during 2011
- A MVA classifier (BDT) based on kinematic and geometrical variables used to increase S/B separation
- Events are studied in a 2D binned plane ( $m_{\mu\mu}$ , BDT).
- For each bin the expected signal and background yields have been computed

Data driven calibration

•The CLs (=CLs+b/CLb, modified frequentist approach) is evaluated and used for the upper limit extraction.



- > Background, dominated by  $bb \rightarrow \mu\mu X$  component, well understood
- **Bs**  $\rightarrow$  µµ slowly emerging (?), not significant excess
- yields compatible with SM model expectations

<sup>[</sup>Phys. Rev. Lett. 108, 231801 (2012)]



## **Upper limits evaluation**

Last results with 1fb<sup>-1</sup> data set:

| Mode                    | Limit       | at 90 $\%~{\rm CL}$   | at $95\%$ CL         |
|-------------------------|-------------|-----------------------|----------------------|
| $B_s^0 \to \mu^+ \mu^-$ | Exp. bkg+SM | $6.3 \times 10^{-9}$  | $7.2 \times 10^{-9}$ |
|                         | Exp. bkg    | $2.8 \times 10^{-9}$  | $3.4 \times 10^{-9}$ |
|                         | Observed    | $3.8 \times 10^{-9}$  | $4.5 \times 10^{-9}$ |
| $B^0 \to \mu^+ \mu^-$   | Exp. bkg    | $0.91 \times 10^{-9}$ | $1.1 \times 10^{-9}$ |
|                         | Observed    | $0.81 \times 10^{-9}$ | $1.0 \times 10^{-9}$ |

A fit to the BR is also performed using a profile likelihood method:

$$B(B^{0}_{s} \rightarrow \mu^{+}\mu^{-}) = (0.8^{+1.8}_{-1.3}) \ 10^{-9}$$



[Phys. Rev. Lett. 108, 231801 (2012)]

## **Combination with CMS and ATLAS**

#### ATLAS, CMS and LHCb results have been recently combined

[arXiv:1204.0735, JHEP 1204(2012) 033, PRL 108,231801(2012),LHCb-CONF-2012-017]



#### $BR(B_s \rightarrow \mu^+ \mu^-) < 4.2 \times 10^{-9} @95\% C.L.$

- Excess over background at ~ $2\sigma$  level (1-CL<sub>b</sub> (p-value)=5%)
- Compatible with SM at  $1\sigma$  (1-CL<sub>s+b</sub>=84%)

 $BR(B^0 \rightarrow \mu^+\mu^-) < 0.81 \times 10^{-9} @95\% C.L.$ 

## Impact of BR( $B^0_s \rightarrow \mu^+ \mu^-$ ) on some NP models



### Impact of the latest LHCb limits



### **Experimental status**



## $D^0 \rightarrow \mu^+ \mu^-$ : motivation and analysis

LHCb analysis performed 0.9 fb<sup>-1</sup> using D<sup>\*+</sup> tagged sample selecting D<sup>\*+</sup> $\rightarrow$ D<sup>0</sup>( $\rightarrow$ µ<sup>+</sup>µ<sup>-</sup>)π<sup>+</sup>.

• MVA classifier used to reduce main bkg sources due to combinatorial from b and c hadron decays

[LHCB-CONF-2012-005]

 $\blacktriangleright D^0 \to \pi^+\pi^-$  used as normalization channel:

$$\mathcal{B}(D^0 \to \mu^+ \mu^-) = \frac{N_{D^{*+} \to D^0(\to \mu^+ \mu^-)\pi^+}}{N_{D^{*+} \to D^0(\to \pi^+ \pi^-)\pi^+}} \frac{\varepsilon_{\pi\pi}}{\varepsilon_{\mu\mu}} \cdot \mathcal{B}(D^0 \to \pi^+ \pi^-) = \alpha \cdot N_{D^{*+} \to D^0(\to \mu^+ \mu^-)\pi^+}$$



## $B_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ : motivation and analysis



• Cut based analysis on 1fb<sup>-1</sup> data sample:

- Resonant sample used for selection optimization

- PID, separation between B vertex and primary vertices, B vertex quality, veto on  $\varphi$  mass

- BR evaluated normalizing on  $B^0 \rightarrow J/\psi(\mu^+\mu^-)K^{*0}(K^+\pi^-)$ 

Results



$$\begin{split} &\mathsf{BR}(\mathsf{B}_{\mathsf{s}}{\rightarrow}\mu^{+}\mu^{-}\mu^{+}\mu^{-}) < 1.30 \times 10^{-8} \ \texttt{@95\% C.L.} \\ &\mathsf{BR}(\mathsf{B}^{0}{\rightarrow}\mu^{+}\mu^{-}\mu^{+}\mu^{-}) < 0.54 \times 10^{-8} \ \texttt{@95\% C.L.} \end{split}$$

## $B \rightarrow K^{*0} \mu^+ \mu^-$

 $B \rightarrow K^{*0}\mu^+\mu^-$  differential decay distribution can be described with 3 angles ( $\theta_1, \theta_k, \phi$ ) and dimuon mass q<sup>2</sup> Parametrized in terms of 4 angular observable (folding  $\phi$  angle) **FL**, **AFB**, **S3** and **AIm** theoretically clean observables, sensitive to NP contribution to C7, C9 and C10

 $\frac{1}{\Gamma} \frac{\mathrm{d}^4 \Gamma}{\mathrm{d} \cos \theta_\ell \, \mathrm{d} \cos \theta_K \, \mathrm{d} \hat{\phi} \, \mathrm{d} q^2} = \frac{1}{\Gamma}$ 

▶F<sub>L</sub> fraction of K<sup>\*0</sup> longitudinal polarization
▶ A<sub>FB</sub> forward backward asymmetry
▶ S<sub>3</sub> ∝ A<sub>T</sub><sup>2</sup>(1-F<sub>L</sub>) with A<sub>T</sub> = asymmetry in
K<sup>\*0</sup> transverse plane
▶ A<sub>Im</sub> a T-odd CP asymmetry



$$\frac{9}{16\pi} \left[ F_L \cos^2 \theta_K + \frac{3}{4} (1 - F_L) (1 - \cos^2 \theta_K) + F_L \cos^2 \theta_K (2 \cos^2 \theta_\ell - 1) + \frac{1}{4} (1 - F_L) (1 - \cos^2 \theta_K) (2 \cos^2 \theta_\ell - 1) + S_3 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \cos 2\hat{\phi} + A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \right]$$

## Angular analysis: A<sub>FB</sub>, F<sub>L</sub>, A<sub>Im</sub> and S<sub>3</sub>

- ➡ Used 1fb<sup>-1</sup> data, observed 900±34 events (more than Babar+Belle+CDF) splitted in 6 q<sup>2</sup> bins
- → 4D simultaneous fit to 3 angles and mass for the extraction of  $A_{FB}$ ,  $F_L$ ,  $S_3$  and  $A_{Im}$
- $\Rightarrow$  68% confidence intervals estimated 1D profile likelihood  $_{=}^{\oplus}$
- → T-odd CP asymmetry  $A_{Im}$  expected to be  $O(10^{-3})$  in SM
- ➡ Most precise measurements up-to-date consistent with the SM prediction [C. Bobeth et al., JHEP 07 (2011) 067]
- ➡ Still room for NP contribution



Babar: S. Akar, Lake Louise 2012 Belle: Phys. Rev. Lett. 103, 171801 (2009) CDF: Phys. Rev. Lett. 108, 081807 (2012) LHCb: LHCb-CONF-2012-008



## A<sub>FB</sub>(q<sup>2</sup>) zero crossing angle

[LHCb-CONF-2012-008]

→ A<sub>FB</sub> zero-crossing point (q<sup>2</sup><sub>0</sub>) for dimuon system well defined in the SM
 → q<sup>2</sup><sub>0</sub> has been extracted from 2D fit of IM,q<sup>2</sup>



world first measurement:  $q^2_0 = 4.9^{+1.1}_{-1.3} \text{ GeV}^2/c^4$ consistent with SM predictions which range from 4 to 4.3 GeV<sup>2</sup>/c<sup>4</sup>

[C. Bobeth et al., JHEP 07 (2011) 067;M. Beneke et al., Eur. Phys. J. C41 (2005) 173;A. Ali et al., Eur. Phys. J. C47 (2006) 625]

## Isospin asymmetry in $B \rightarrow K^{(*)}\mu^+\mu^-$

The isospin asymmetry defined as follow:

$$A_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) - \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\mu^{+}\mu^{-}) + \frac{\tau_{0}}{\tau_{+}}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\mu^{+}\mu^{-})}$$

can precisely measured better than the BFs



Expected A<sub>I</sub>~0 in the SM (O(10%) at q<sup>2</sup> $\rightarrow$ 0 for B $\rightarrow$ K<sup>(\*)</sup>µ<sup>+</sup>µ<sup>-</sup>)

Analysis based on 1fb<sup>-1</sup>

## $B \rightarrow K^* \mu^+ \mu^-$ results

[LHCB-PAPER-2012-011]

- Differential BR measured
- $\blacktriangleright$  A<sub>I</sub> for the  $B{\rightarrow}K^*\mu^+\mu^-$  is consistent with zero, as predicted by the SM



## $B \rightarrow K \mu^+ \mu^-$ results

[LHCB-PAPER-2012-011]

- $\blacktriangleright$  Observed a deficit of  $B^0{\rightarrow} K^0\mu^+\mu^-$  where SM is well predicted
- $\blacktriangleright$  A1 for the  $B{\rightarrow} K\mu^+\mu^-$  below the SM prediction
- Deviation from zero integrated across  $q^2 4.4\sigma$  (ignoring small correlation of errors between each  $q^2$  bin)
- ▶ All the previous measurements of A<sub>I</sub> are negative

[BABAR: B. Aubert et al., submitted to Phys. Rev. D, arXiv:1204.3933 ] [Belle: J.-T. Wei et al. Phys. Rev. Lett. 103 (2009) 171801, arXiv:0804.4770] [CDF: Phys.Rev.Lett. 107 (2011) 201802, arXiv:1204.3933]



### $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

In SM b $\rightarrow$ dl<sup>+</sup>l<sup>-</sup> transition even more suppressed by |Vtd/Vts| with respect b $\rightarrow$ sl<sup>+</sup>l<sup>-</sup>, never observed before. Could receive contribution from RPV terms in SUSY SM prediction: BR(B<sup>+</sup> $\rightarrow$  $\pi^+\mu^+\mu^-$ ) = (1.96 ± 0.21)×10<sup>-8</sup> Prev. Exp.: BR (B<sup>+</sup> $\rightarrow$  $\pi^+\mu^+\mu^-$ ) < 6.9×10<sup>-8</sup> (Belle Phys. Rev. D77 (2008) 014017)

#### LHCb has seen this decay in 1fb<sup>-1</sup>

Observed  $25.3^{+6.7}_{-6.4}$  events J/ $\psi$ K<sup>+</sup> decay used as normalization channel BR(B<sup>+</sup> $\rightarrow \pi^+\mu^+\mu^-$ )=( $2.4\pm0.6_{stat}\pm0.2_{syst}$ )×10<sup>-8</sup> 5.6 $\sigma$  excess Nicely match with SM prediction Rarest B decay ever observed





## Conclusions

LHCb has demonstrated its power in many flavour physics topics: CPV studies with b and c hadrons, rare B and D decays, and others

• Current results on  $BR(B_{d,s} \rightarrow \mu^+ \mu^-)$  put severe constraints to NP approaching the SM prediction; brand new LHC combination presented • World best limits for BR(  $D^0 \rightarrow \mu^+ \mu^-$ ) and BR(  $B_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ )

LHCb have obtained the most precise measurement of the angular observables in  $B \rightarrow K^{*0}\mu^+\mu^-$ , all of them agree with the SM Isospin-asymmetry in  $B \rightarrow K^{(*)}\mu^+\mu^-$  decays: 4.4 $\sigma$  deviation from 0 (~SM) for the  $B \rightarrow K \mu^+ \mu^-$  observed.

First observation of  $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ 

Expected to double the data statistics in 2012, many improvements are foreseen, stay tuned!