

Measurement of top quark properties at Tevatron

Petr Vokac (Czech Technical University in Prague) for DØ and CDF Collaborations

Heavy Quarks and Leptons June 11 – 15, 2012

Outline

- Top quark mass measurements
- Top and antitop mass difference
- Top width & lifetime
- Spin correlations in top antitop events
- W helicity

Runll (2001-2011) Chicago ~ 10fb⁻¹

Tevatron $\sqrt{s} = 1.96$ TeV

Main injector & Recycler

‡ Fermilab

Top quark

- High mass and short lifetime
 - good for measuring properties
 - sensitive to physics beyond SM
- Almost 10fb⁻¹ data
 - thousands of events
 - precision measurement of top properties
- SM top quark \rightarrow Wb \approx 100%
 - different final states given by W decay
 - I+jets ~ 30%
 - dilepton ~ 5%
 - all-jets ~ 46%
 - tau

Top Pair Decay Channels

Top mass

- Free parameter in SM
- With W-boson mass constraints on the SM Higgs
- Two main methods
 - template method compare e^s a distribution of an observable in data with MC s+b templates for different masses
 - matrix element method (ME)
 - calculate per event signal & background probabilities for given top mass using convolution of leading order matrix element and transfer function that describes detector resolution
 - only main backgrounds (ME requires significant CPU time)

(GeV)

- ensemble tests + calibration (using only LO approximation)
- Reduce JES uncertainty by in situ calibration using W boson mass

Mass in I+jets channel

- Template method with full CDF RunII dataset 8.7fb⁻¹
- Minimize χ^2 to kinematics of the tt system
- Templates (m^{reco}, m^{reco(2)}, m_i) for signal and background

 $-m_{t} \times \Delta_{IFS}$ grid, for 0,1,2 b tagged jets and 4 or >4 jets

Maximum likelihood – product of per event probabilities

all data

Mass in I+jets channel

- Jet Energy Scale dominant systematic
 - in-situ only global scale of JES
 - special JES for jet from b quark
 - NN to improve calorimeter energy based on momentum provided by tracker
- Systematically dominated
- Most precise single method

172.85 ±0.71(stat) ±0.84(syst) GeV/c² 172.85 ±1.10 GeV/c² (precision ±0.64%)

- Matrix element method used by DØ on 3.6fb⁻¹
 - flavor dependent jet energy scale

174.94 ±0.83(stat) ±0.78(JES) ±0.96(syst) GeV/c² 174.94 ±1.49 GeV/c² (precision ±0.85%)

PRD 84, 032004 (2011)

Mass in dilepton channel

- Neutrino weighting, 5.3fb⁻¹
 - kinematically underconstrainted
 - can't use in situ calibration
 - using the one from I+jets
 - integration over η distribution of both neutrinos \rightarrow kinematics solutions + weight (MET)
 - independently ee, eµ, μµ
 - JES still main systematic uncertainty
 - most precise in dilepton (stat. limited)

174.0 ±2.4 (stat) ±1.4 (syst) GeV/c² 174.0 ±2.8 GeV/c² (precision ±1.6%)

submitted to PRL (2012), arXive 1201.5172

Matrix Element, 5.4fb⁻¹

173.3 ±1.8(stat) ±2.4(syst) GeV/c² 173.3 ±3.0 GeV/c² (precision ±1.8%)

PRL 107, 082004 (2011)

HQL 2012

Mass in all-jets channel

- Template method with in situ JES, 5.8fb⁻¹
 - 6-8 jets (consider leading 6)
 - NN to select signal

b-tagging	Signal	Background	Observed
1-tag	1712 ± 77	604 ± 50	2256
$\geq 2\text{-tags}$	305 ± 22	316 ± 26	600

- combinations (1 btag 30, 2 btags 6, ≥2 btags 18)
- Data driven background
 - QCD can't reliably model this phasespace_{0.5}
 - based on tag rate parametrization
- Systematic dominated s+b modeling

172.5 ±1.4(stat) ±1.4(syst) GeV/c² 172.5 ±2.0 GeV/c² (precision ±1.1%)

CDF Note 10456 (2011)

CDF Run II Preliminary (5.8 fb⁻¹)

Mass in MET + jets channel all data

- Template method with full CDF RunII dataset 8.7fb⁻¹
 - same approach as in I+jets
- Catching all events missed in channels with MET

b-tagging	Signal	Background	Total Expected	Observed
$1 \mathrm{tag}$	1228.1 ± 144.2	713.3 ± 61.3	1941.4 ± 156.7	2102
$2 \mathrm{tag}$	552.5 ± 73.3	168.6 ± 43.9	721.1 ± 85.4	775

- Data driven background (similar to alljet)
- NN trained to get cleaner signal

HQL 2012

Tevatron top mass combination

- Up to 5.8fb⁻¹, arXiv:1107.5255
 - with all data measurement of the mass approaching 1 GeV uncertainty
- Top mass definition (comes from MC templates, calibration)

- mass from cross section

Mass difference

- look for difference top-antitop mass
- check of CPT invariance in top sector
- same procedure I+jets mass, but $m_i \neq m_i$
- in agreement with SM (no difference)

all data

400

∿ن350

Š300

250

50 -150

-100

Top quark width

• Indirect measurement from single top quark t-channel cross section and ratio B(t \rightarrow Wb)/B(t \rightarrow Wq) $q' \sim q'$

 $R = B(t \rightarrow Wb)/B(t \rightarrow Wq) = 0.90\pm0.04$ $|V_{tb}| = 0.95\pm0.02$

PRL, 121802 (2011)

$$\Gamma_{p} \equiv \Gamma(t \rightarrow Wb) \approx \sigma_{t-channel}^{meas}$$
$$\Gamma = \frac{\Gamma_{p}}{1 - channel} = \frac{\sigma_{t-channel}^{meas}}{1 - channel} \Gamma(t \rightarrow Wb)^{SM}$$

$$= \frac{1}{\mathcal{B}(t \to Wb)} = \frac{1-channel}{\mathcal{B}(t \to Wb)}\sigma_{t-channel}^{SM}$$

– NLO prediction
$$\Gamma_t = 1.33 \text{ GeV}$$

 $\begin{aligned} &\Gamma_{t} = 2.00^{+0.47} \text{ GeV} \\ &\tau_{t} = (3.29^{+0.90} \text{ }_{-0.63}) \times 10^{-25} \text{ (h/}{\Gamma_{t}}\text{)} \end{aligned}$

PRD 85, 091104 (2012)

B

 hadronization time scale 3.3 × 10⁻²⁴s
 top quark decay before hadronization

W

g 9999

Top quark width

- Direct measurement in I+jets, 4.3fb⁻¹
 - template method with different top quark Γ_t and in situ JES
 - subsamples with 1,2 b-tags (diff. s+b)^{*}
 - comparing s + b probability density
 - unbinned maximum likelihood
 - limits on Γ_t via Feldman-Cousins method

 $\Gamma_t < 7.6 \text{ GeV} @ 95\% \text{ CL}$ 0.3 < $\Gamma_t < 4.4 \text{ GeV} @ 68\% \text{ CL}$

PRL 105, 232003 (2010)

Spin correlations

- SM predict top quark polarized
 - polarization of top quark spin observed through correlations between flight directions of decay products
 - $t\bar{t}$ correlation spin strength C [-1, 1]

$$\frac{1}{\sigma_{t\bar{t}}}\frac{d^2\sigma_{t\bar{t}}}{d\cos\theta_+d\cos\theta_-} = \frac{1+C\cos\theta_+\cos\theta_-}{4}$$

- SM predicts
$$C = 0.777^{+0.027}_{-0.042}$$
 (beam basis)

sensitive to non-SM

$$C = \frac{N_{||} - N_{||}}{N_{||} + N_{||}}$$

Spin correlations – template methods

- Using templates for cosθ cosθ,
- Binned maximum likelihood for C_{meas}
- Statistically limited
- Consistent with SM

Spin correlations – ME

• ME for hypothesis with (H=c) and without (H=u) spin correlations

$$R = \frac{P_{sig}(x, H = c)}{P_{sig}(x, H = u) + P_{sig}(x, H = c)}$$

- distributions of R for $t\bar{t}$ MC (c/u)
- Better sensitivity

• First evidence of non-zero SM spin correlation at 3.1 standard deviations

W boson helicity

- Measured in t \rightarrow Wb (~ 100%)
- three possible helicity states
 - Longitudinal (f_0), left (f_1) and right (f_1) handed
 - angular distribution of decay products in W rest frame
- in SM right-handed strongly suppressed
 - V A interaction
 - fraction of f_0 , f_1 and f_2 depends on m_t , m_w
 - deviation would provide evidence BSM
 - non-SM contribution
 - difference in V A structure of tWb vertex
- Measurement doesn't rely on SM constraints
 - simultaneous measurement of f_0 , f_1

Standard model: $f_0 = 69.6\%$ $f_{-} = 30.3\%$ $f_{+} = 0.1\%$

W boson helicity combination

- Combination of three published results
 - DØ, 5.4fb⁻¹, I+jets and dilepton, binned Poisson likelihood
 - CDF, 5.1fb⁻¹, dilepton, template method
 PRD 83, 032009 (2011)
 CDF Note 10543 (2011)
 - CDF, 2.7fb⁻¹, I+jets, matrix element method_{PRL 105, 042002} (2010)
- First combination, improved sensitivity by factor ~ 2

Conclusions

- Tevatron is making legacy measurement
 - several measurements use all RunII data
 - mass measured with precision 0.54%
 - final combination not yet done
 - improvements requires better understanding of systematic uncertainties
- Some measurements are complementary to LHC (e.g. spin correlations)
- A lot of top quark properties have been measured and tested to SM predictions

Backup

Search for LIV in top sector

- No limits on violation of Lorentz invariance exist in top quark sector
- Look for periodic oscillation in the number of ttbar events observed in the Earth-based detector as a function of sidereal time
- The relevant time scale is the sidereal day (1 day)

