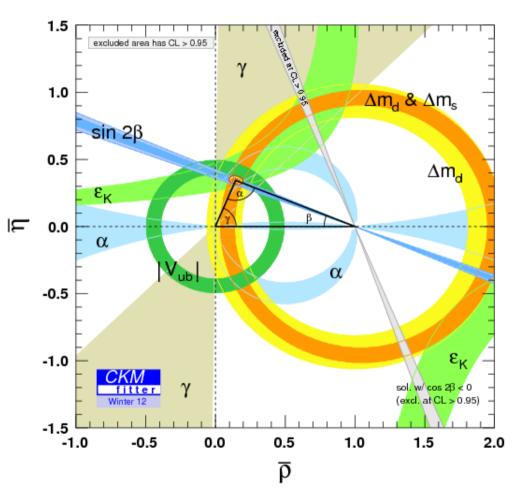
Measuring γ at LHCb

Mark Whitehead

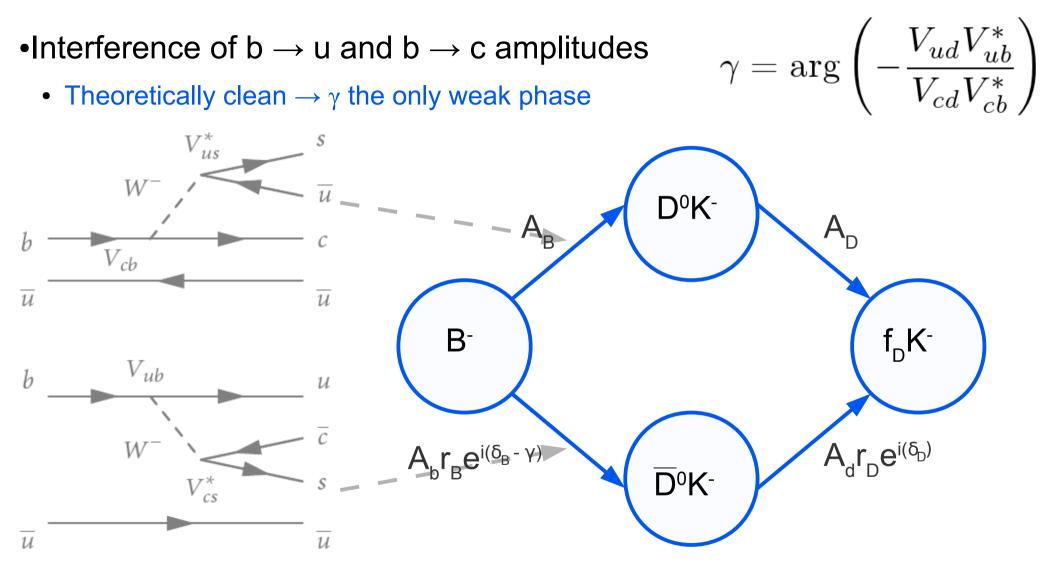
(On behalf of the LHCb collaboration)

Heavy Quarks and Leptons 2012 Prague, Czech Republic


THE UNIVERSITY OF WARWICK

Introduction to LHCb γ program

•Two groups of γ measurements at LHCb


- Tree level processes discussed here
- Loop processes
 - See following talk by Denis Derkach
- •Strengths of LHCb for $\boldsymbol{\gamma}$
 - High bb production rate
 - Combat low rates of $b \rightarrow u$ transitions
 - Excellent PID from 2 RICHs
 - Separate K and $\boldsymbol{\pi}$
 - Excellent proper time resolution
 - Required for time dependent analyses

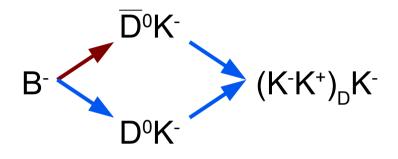
 $\gamma = 66 \pm 12^{\circ}$ (CKMfitter Winter 2012)

γ from trees - principle

 A_{B}, A_{D} : Amplitudes r_{B}, r_{D} : Suppression factors

 $\delta_{_{B}}, \delta_{_{D}}$: Strong phase difference

12/06/2012


HQL - Prague - 2012

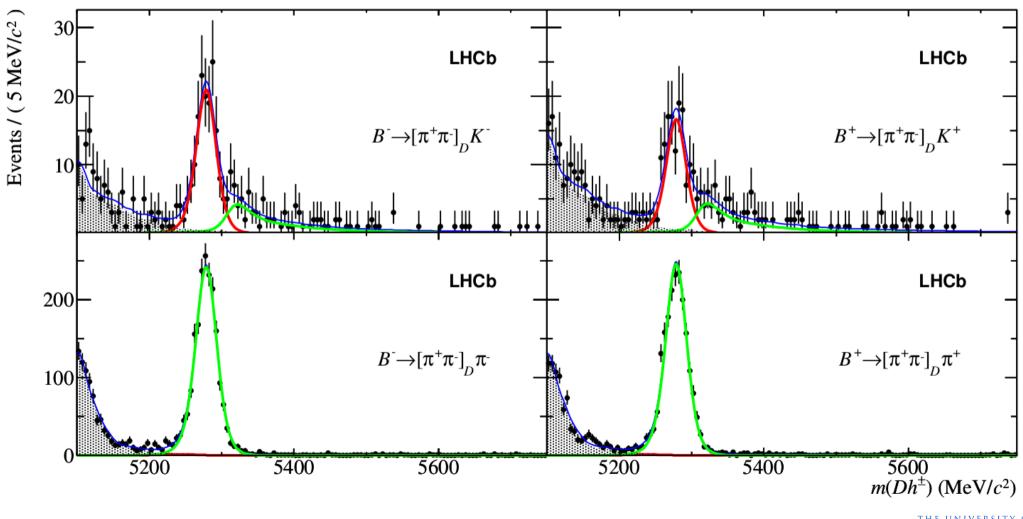
Time independent methods

Time independent - GLW

- •GLW method [Phys. Lett. B 253, 483 (1991), Phys. Lett. B 265, 172 (1991)]
 - Previously used at B-factories and Tevatron
 - For D decays to CP eigenstates
 - For example $K^{\scriptscriptstyle +}K^{\scriptscriptstyle -}$ and $\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

Two observables

$$A_{CP\pm} = \frac{\Gamma(B^- \to D_{CP\pm}K^-) - \Gamma(B^+ \to D_{CP\pm}K^+)}{\Gamma(B^- \to D_{CP\pm}K^-) + \Gamma(B^+ \to D_{CP\pm}K^+)} = \frac{\pm 2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 \pm 2r_B \cos \delta_B \cos \gamma}$$


$$R_{CP\pm} = \frac{\Gamma\left(B^- \to D_{CP\pm}K^-\right) + \Gamma\left(B^+ \to D_{CP\pm}K^+\right)}{\Gamma\left(B^- \to D^0K^-\right) + \Gamma\left(B^+ \to \overline{D}{}^0K^+\right)} = 1 + r_B^2 \pm 2r_B\cos\delta_B\cos\gamma$$

• 3 "unknowns" $r_{_B} \delta_{_B}$ and γ

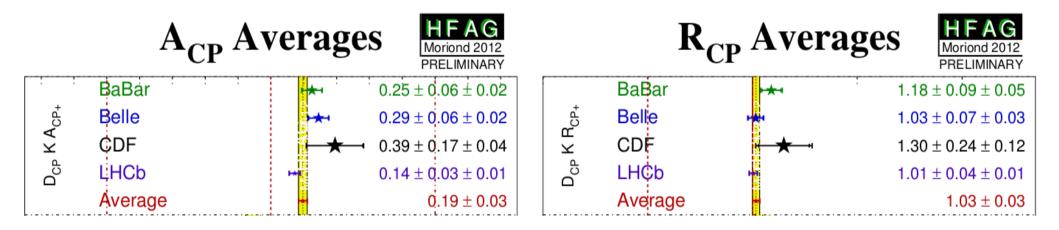
Time independent – GLW @ LHCb

- $\bullet B^{\scriptscriptstyle -} \to D(\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -})h^{\scriptscriptstyle -} \text{ [Physics Letters B 712 (2012), pp. 203-212]}$
 - Where $h = K \text{ or } \pi$


 $B \rightarrow DK, \, B \rightarrow D\pi,$ partially reconstructed decays and the full fit

Time independent – GLW @ LHCb

- $\bullet B^{\text{-}} \longrightarrow D(K^{\text{+}}K^{\text{-}})h^{\text{-}} \text{ [Physics Letters B 712 (2012), pp. 203-212]}$
 - Where $h = K \text{ or } \pi$


 $B \rightarrow DK$, $B \rightarrow D\pi$, dashed $\Lambda_{b} \rightarrow \Lambda_{c}h$, partially reconstructed decays and the full fit

Time independent – GLW @ LHCb

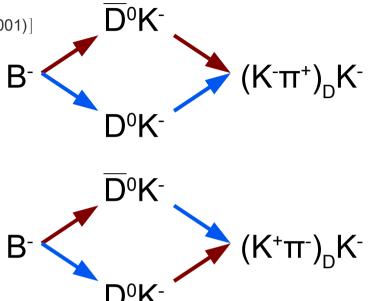
•B⁻ \rightarrow D(h⁺h⁻)h⁻ GLW summary

- World's most precise measurements of ${\rm A}_{_{\rm CP+}}$ and ${\rm R}_{_{\rm CP+}}$

- •B factories still dominating the other GLW modes
 - Look out for future results from LHCb:
 - $B^0 \rightarrow DK^{*0}$

Time independent - ADS

•ADS method [Phys. Rev. Lett. 78, 3257 (1997), Phys. Rev. D 63, 036005 (2001)]

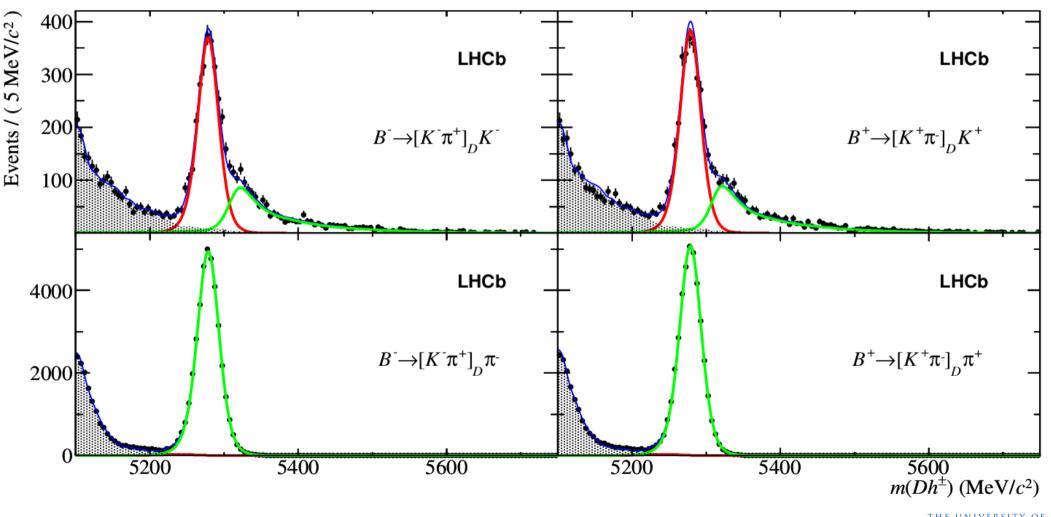

- Previously used at B-factories and Tevatron
- For D decays to flavour specific states
 - For example Kπ:
 - $D^0 \rightarrow K^-\pi^+$ (CF) and $D^0 \rightarrow K^+\pi^-$ (DCS)
 - Suppressed B decay balanced by DCS D decay

Two observables

$$A_{ADS} = \frac{2r_B r_D \sin(\delta_D + \delta_B) \sin(\gamma)}{r_D^2 + r_B^2 + 2r_B r_D \cos(\delta_D + \delta_B) \cos(\gamma)}$$

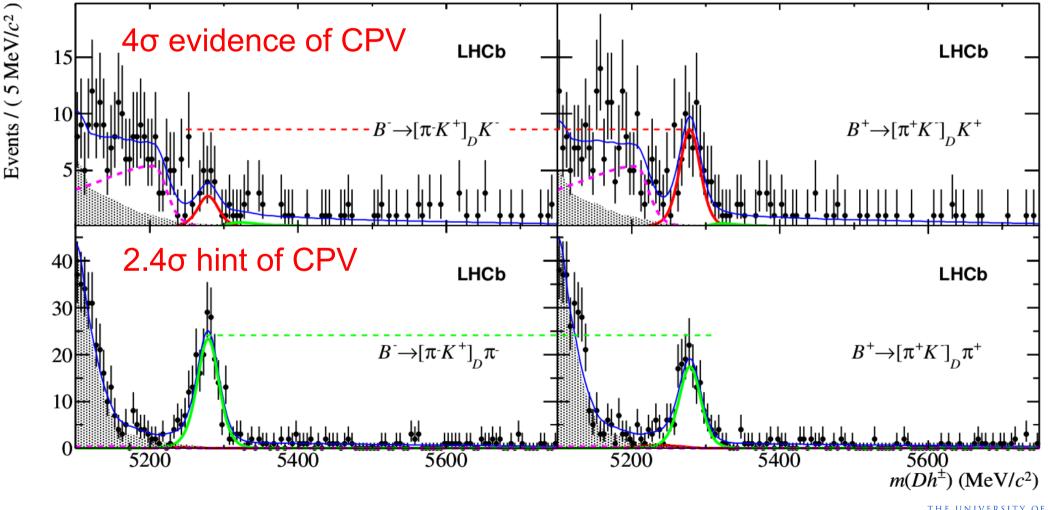
$$R_{ADS} = r_D^2 + r_B^2 + 2r_B r_D \cos(\delta_D + \delta_B) \cos(\gamma)$$

- Same 3 "unknowns" $r_{_B}\,\delta_{_B}$ and γ plus 2 more: $r_{_D}$ and $\delta_{_D}$
 - 2 extras are known from CLEO-c experiment [arXiv:1101.4855]

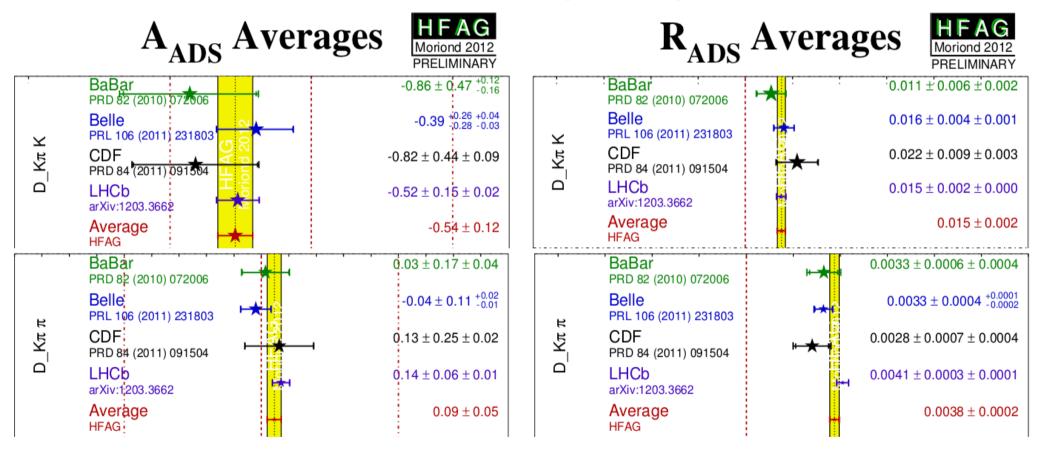

HQL - Prague - 2012

Time independent – ADS @ LHCb

- $\bullet B^{\scriptscriptstyle -} \to D(K\pi)h^{\scriptscriptstyle -} \text{ [Physics Letters B 712 (2012), pp. 203-212]}$
 - Where $h = K \text{ or } \pi$


 $B \rightarrow DK, \, B \rightarrow D\pi,$ partially reconstructed decays and the full fit

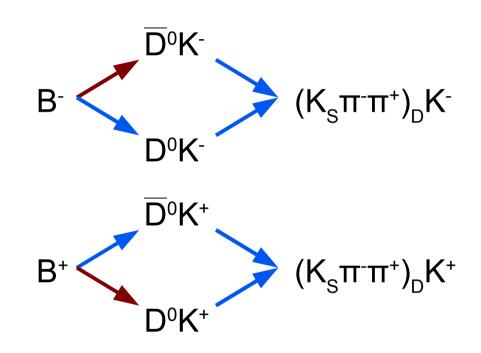
Time independent – ADS @ LHCb


- $\bullet B^{\scriptscriptstyle -} \to D(K\pi)h^{\scriptscriptstyle -} \text{ [Physics Letters B 712 (2012), pp. 203-212]}$
 - Where $h = K \text{ or } \pi$

 $B \rightarrow DK$, $B \rightarrow D\pi$, partially reconstructed decays (dashed $B_s \rightarrow DK\pi$) and the full fit

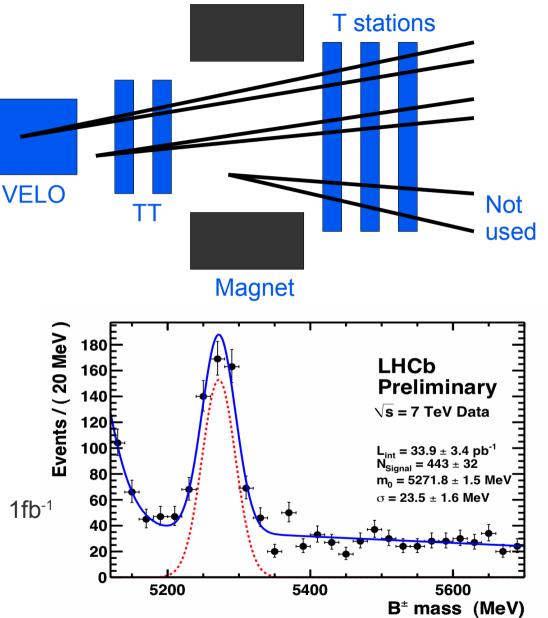
Time independent – ADS @ LHCb

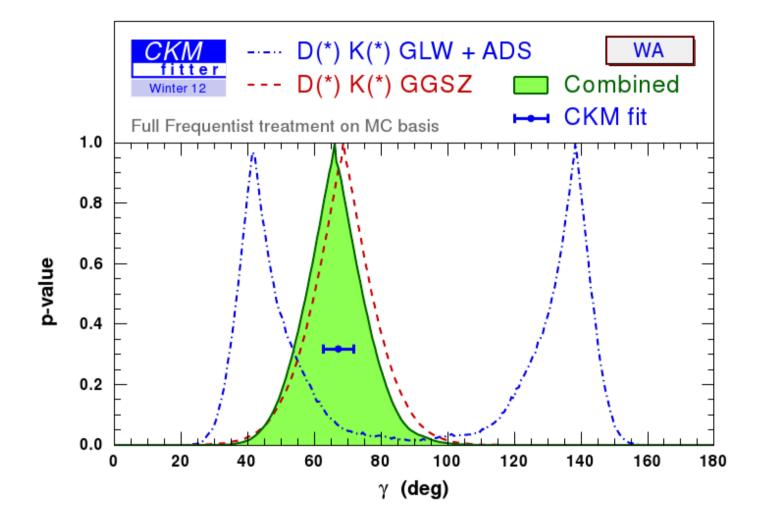
- •B⁻ \rightarrow D(K π)h⁻ ADS summary
 - World's most precise measurements of A_{ADS} and R_{ADS}


•B factories still dominating the other ADS modes

Time independent – GGSZ

•GGSZ (Dalitz) method


- Exploit different interference patterns in D-Dalitz plots for B⁺ and B⁻
 - For example $K_s \pi^+ \pi^-$
- Model independent approach
 - Binned fit with $\boldsymbol{\delta}_{_{D}}$ input from CLEO-C
- Model dependent approach
 - Unbinned fit with D decay model
- Two observables to fit for $x_{\pm} = r_B \cos(\gamma \pm \delta_B)$ $y_{\pm} = r_B \sin(\gamma \pm \delta_B)$
- Used by B-factories to make the most accurate measurements of $\boldsymbol{\gamma}$



Time independent – GGSZ @ LHCb

- $\bullet B^{\scriptscriptstyle -} \to D(K_{_S}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle +})K^{\scriptscriptstyle -}$
 - K_s reconstruction a challenge
 - 2/3 decay downstream of the VELO
 - Two parallel analyses
 - Binned model independent
 - Unbinned model dependent
 - Control mode observed
 - $B^- \rightarrow D(K_s \pi^- \pi^+) \pi^-$
 - ~ 400 events in 36pb⁻¹
 - Analysis in progress
 - Expect ~600 B⁻ \rightarrow D(K_s $\pi^{-}\pi^{+}$)K⁻ events in 1fb⁻¹
 - 0.5 x Belle dataset

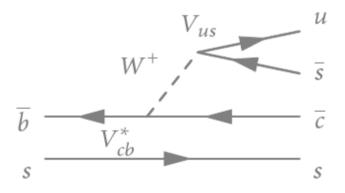
Time independent – Summary

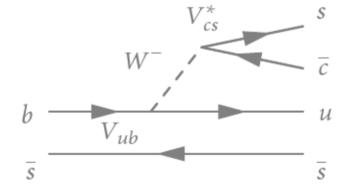
•GLW/ADS improvements are important, but not enough

• Two solutions are resolved by other method(s) (GGSZ)

Time dependent method

12/06/2012


Time dependent studies @ LHCb


•Mixing induced interference in $B_s \rightarrow D_s^{T}K^{T}$

- Particle and anti-particle decay to the same final state
 - Four decay rates to measure

 $\Gamma(B_{S}^{0} \longrightarrow D_{S}^{-}K^{+}) \quad \Gamma(B_{S}^{0} \longrightarrow D_{S}^{+}K^{-})$ $\Gamma(\overline{B_{S}^{0}} \longrightarrow D_{S}^{-}K^{+}) \quad \Gamma(\overline{B_{S}^{0}} \longrightarrow D_{S}^{+}K^{-})$

- Sensitive to $\gamma + \varphi_s$
 - Can measure ϕ_s from other channels

- No colour suppression
 - Increased interference between channels

Events / (14 MeV/c^2) 160• Excellent proper time resolution required 140120

180

100 80

60

40

20

0

5200

LHCb

5400

 $\cdots B^0 \rightarrow D^* K^+$

^{γ-}(π⁺, ρ⁺)

Combinatorial

 $m(D_{s}K^{+})$ [MeV/c²]

5600

• ~50 fs to resolve B_{c} oscillations

 $\bullet B_{s} \rightarrow D_{s}^{\dagger}K^{\pm}$

- Flavour tagging vital [arXiv:1204.1237]
 - Opposite side tagger: 3.2 ± 0.8 %
 - Extra power from same-side tagger

Progress towards
$$\gamma$$

• Oscillation frequency [Phys.Lett. B709(2012)177-184]
 $\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \text{ ps}^{-1}$
• B_s $\rightarrow D_s^{\dagger} \text{K}^{\pm}$ branching fraction [arXiv:1204.1237]
 $\mathcal{B}(B_s^0 \rightarrow D_s^{\mp} K^{\pm}) = (1.90 \pm 0.12 \pm 0.13^{+0.12}_{-0.14}) \times 10^{-4}$
stat syst fs/fd
12/06/2012
HQL - Prague - 2012
 $M_{acc}^{0} = 0.10^{-1} \text{ m}^{-1} \text{ m}^{-1$

Time dependent studies @ LHCb

arXiv:1204.1237

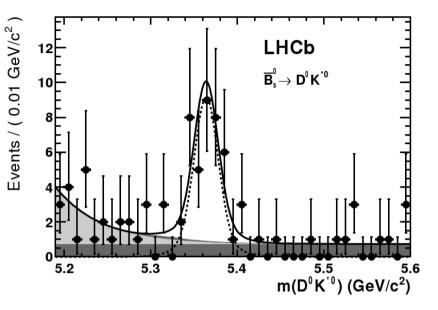
26 events, 2011 data,

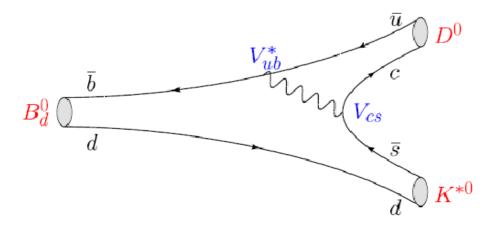
404

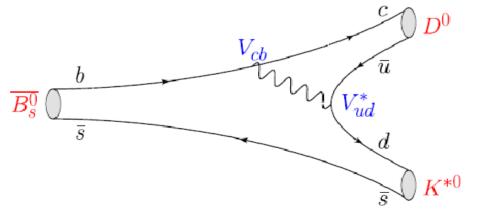
237

~0.37/fb

LHCb,

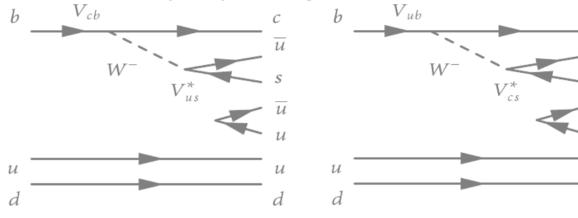

Other measurements


Other modes – $B^0 \rightarrow DK^{*0}$


•GLW / ADS analysis similar to $B^{\scriptscriptstyle -} \to DK^{\scriptscriptstyle -}$

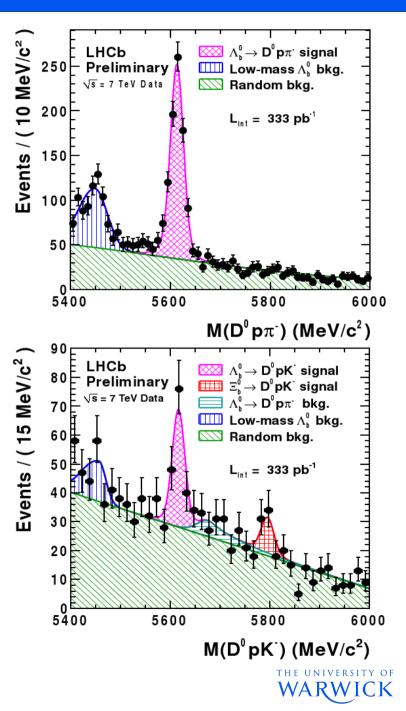
- Interfering diagrams both colour suppressed
 - Low rates
 - Enhanced interference
- Suppressed B⁰ decay shares final state with B_s
 - B_s mode ~ 20x the rate
 - First observation of B_s decay [Phys.Lett. B706 (2011) 32-39]

 $\mathcal{B}\left(\overline{B}_{s}^{0} \to D^{0}K^{*0}\right) = \left(4.72 \pm 1.07 \pm 0.48 \pm 0.37 \pm 0.74\right) \times 10^{-4}$


Other modes – $\Lambda_{\rm b} \rightarrow DpK$

U

d

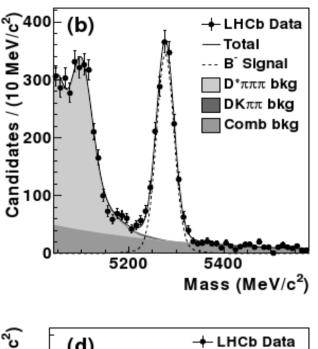

 $\bullet\Lambda_{_b}\to DpK$

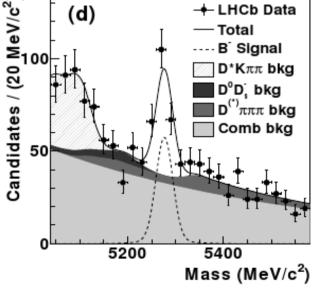
• Sensitivity to γ analogous to $B \rightarrow DK^{*0}$

- Well suited to LHCb
 - All final state particles are charged
- Exploit the full phase space
 - Dalitz plot analysis
- Branching fraction ratio 6.3σ [LHCb-CONF-2011-036]

$$\frac{\mathcal{B}(\Lambda_b^0 \to D^0 p K^-)}{\mathcal{B}(\Lambda_b^0 \to D^0 p \pi^-)} = 0.112 \pm 0.019 \, {}^{+0.011}_{-0.014}$$

stat syst


HQL - Prague - 2012


Other modes – $B^{\scriptscriptstyle -} \to D^0 K^{\scriptscriptstyle -} \pi^+ \pi^{\scriptscriptstyle -}$

•Several methods to extract γ

- Quasi-two body
 - Modified GLW/ADS method
 - Potential dilution from intermediate resonances
- Amplitude analysis
- •Using D⁰->K⁻π⁺ [arXiv:1201.4402]
 - Favoured ADS mode observed (9σ)
 - ~130 events in 36pb⁻¹ from 2010 data
 - Expect ~1/3 of $B^- \rightarrow DK^-$ in 2011 data

$$\frac{\mathcal{B}(B^- \to D^0 K^- \pi^+ \pi^-)}{\mathcal{B}(B^- \to D^0 \pi^- \pi^+ \pi^-)} = (9.4 \pm 1.3 \pm 0.9) \times 10^{-2}$$

stat syst

Other modes

- •Many other options available
 - $B_s \rightarrow D\phi$
 - First step is a first observation
 - $B_s \rightarrow \overline{D}{}^0K^+K^-$
 - First step to observe both $\mathsf{B}^{\scriptscriptstyle 0}$ and $\mathsf{B}_{\scriptscriptstyle S}$ to DKK final state
 - $B^0 \rightarrow \overline{D}{}^0K^+\pi^-$
 - Enhanced sensitivity to γ using the whole phase space w.r.t. $B^0 \rightarrow DK^{*0}$
 - First step to measure branching fraction ratios for B^o and B_s
 - Additional D decays in $B^{-} \rightarrow DK^{-}$
 - $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$
 - $D^0 \rightarrow K^-\pi^+\pi^0$
 - $D^0 \rightarrow K^- K^+ \pi^- \pi^+$
 - $D^0 \rightarrow \pi^-\pi^+\pi^-\pi^+$
 - Further multi-body modes

Summary

•New era of γ measurements beginning at LHCb

- World's most precise GLW/ADS measurements of $B^{\scriptscriptstyle -} \to DK^{\scriptscriptstyle -}$
 - ~10 σ observation of the suppressed $B^{\scriptscriptstyle -} \to D(K^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -})K^{\scriptscriptstyle -}$ decay
 - 5.8 σ observation of CPV in B⁻ \rightarrow DK⁻ decays (combined)
- Other modes are well under way
 - $B^0 \rightarrow DK^{*0}$
 - $B^0 \rightarrow Dhhh$
 - $B_s \rightarrow D_s^{T}K^{t}$
 - Stay tuned!
- •Different modes and techniques are complimentary
 - No one approach dominates sensitivity
 - Combination of many measurements required

$B^- \rightarrow DK^-\pi^+\pi^-$

Variation of B hadronic parameters over phase-space \Rightarrow different approaches for extracting γ :

•Quasi-two body: Modified ADS, GLW observables; needs "coherence factor"

 $e.g., R_{ADS} = r_s^2 + r_D^2 + 2r_s r_D \kappa \cos(\delta_s + \delta_D) \cos\gamma$ $\kappa \in [0,1]$

$$\kappa e^{i\delta_{s}} = \frac{\int \left|\overline{A}\right| \left|A\right| e^{i(\arg(\overline{A}) - \arg(A))} dPS}{\sqrt{\int \left|\overline{A}\right|^{2} dPS} \sqrt{\int \left|A\right|^{2} dPS}}$$

Potential dilution of interference due to different intermediate resonances with different strong-phases contributing to final state, e.g. $B^- \rightarrow DK_1(1270)$

κ =1 in the two-body limit – one single resonance contributing [PLB 557 198 (2003)]

Amplitude analysis

Binned: Quasi-two body approach in high-coherent bins of the 4-body phase-space