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R& D Studies prompted by interest in High Power
Targets

— Short term exposure (thermo-mechanical shock)
— Long term exposure (radiation damage)
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Radiation Damage on materials could very well bethe LIMITING Factor !!

What does it mean for materials (microscopic & macroscopic terms) ?
generation of voids/dislocations =» changesin physical and mechanical properties
trapping of gases, swelling =>» density reduction

Experience mostly from reactor neutron irradiation
Question: doesradiation type matter ?

| n search of thewonder material ......... > 4
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NATIONAL LABORATORY Beam Studies: Graphite & CC Compositeat the AGS

WHY thelove affair with CC in place of
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Irradiation has a profound effect on
thermal conductivity/diffusivity

CC composite at least allowsfor fiber
customization and thus significant
improvement of conductivity.
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Thermal conductivity of neutron-irradiated graphites.
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Yet to know for sure
how carbon composites
respond to radiation



Expansion dL(um)
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Encouraging signs of 3D CC composite under modest irradiation levels
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Weak direction (orientation normal to fibers)

Annealing behavior also exhibited by 2D Carbon !
(fluence ~ 10"20 protons/cm?2)
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« Effects of irradiation (captured in 1% post-irradiation thermal cycle) shown in RED
* Rest are additional thermal cyclesthat restore material through annealing

* Also shown are specimen activationsin mcCi

* Worth noting isthe similar annealing behavior of specimenswith same activation
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LHC 2-D carbon composite along its weak direction

Thermal Expansion

Thermal Expansion

60

50

40

30

20

10

-10

60

50

40

30

20

10

60

50

40

30

20

10

-10

300 350 0 500 100 150 200 250
Temperature (C)

S0 100 150 200 250 300 350

Temperature (C)

60

50

40

30

20

10 $.1 mCi

S0 100 150 200 250
Temperature (C)

300 350 0 S0 100 150 200 250
Temperature (C)

300 350

Materials for Collimators & Beam
Absorbers



Signs of trouble!!

“weak” reinforcing fiber orientation

CONCERN: isdamage characteristic
of the 2-D structure or inherent to all
carbon composites?

C (LHC) r
ion assembly of "weak":s:
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Follow-up Irradiation Phase for 2-D; 3-D Carbon
composites and Graphite

108 000 nA-has

heamn spot

Materials for Collimators & Beam
Absorbers



Condition of most heavily bombarded specimens after irradiation
(fluence ~10"21 p/cm?2)
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Graphite — Irradiation Effects on Bonding

While graphite has survived “quite” well in fission reactors (several dpa) it
does not seem to endure the high proton flux (fluence ~ 10"21 p/cm2)
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(— « Copper (annealed)
e Glidcop 15AL — Cu alloyed with .15% Al (axial cut and transverse
Coa =< cut)
& &N
SN
& (§‘5 SECONDARY
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 Toyota“Gum Metal”
» Graphite (1G-430 “isotropic”)

AL SO candidates under consider ation

o Ti Alloy (6AIl-4V)

e Tungsten

« Tantalum

« Low-Z alloy - AlIBeMet
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|rradiation Effects on Copper
(fluence ~ 10721 protons/cm?2)

Irradiation Effects o Thermal Expansion of Annealed Copper

Calculated CTE from Cycle #3 = 17.934 E-06/[deg. C]

= Cu_Cycle#l
—— Cu_Cycle#2
—Cu_Cycle#3
——Irrad_Copper_#1

Irrad_Cu_#2

001
0009 - - - - Thermal strain
- 0008 —— Thermal strain + linear
'g ooo7 expansion
E 0.006
é’ 0.005 [
0004 |
o003 | -
0.002 ity NON-TEFO G FOOIN fEMpEratitre
0.0021 (ff X, =1 and C=10.2%)
oot | '
0
[i] 100 200 300 400 500 600
Temperature in cooling steps (°C)
T T T T T T !
50 100 150 200 250 300 350 400 450

Temp (deg. C)

Materials for Collimators & Beam
Absorbers



Thermal Expansion (microns)
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Irradiation studies on super-Invar

— “inflection” point at around 150 C
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Irradiation & temperature effects on Super-Invar
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Studies of Gum Metal (Ti-12Ta-9Nb-3V-6Zr-O)

[Fig. 1] Pesition of Young's Modulus and Strength of GURM MET
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|t exhibits a dislocation-free plastic defor mation
mechanism
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Coefficient of Thermal Expansion(10°°C)

Coefficient of Thermal Expansion(10%/°C)
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Radiation Damage Studies — Other Candidates
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Radiation Effects on Conductivity
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probes

Electrical resistivity =» Thermal conductivity

"

DV (voltage drop)
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Glidcop in both axial and transverse directions (~ 1 dpa)
sees 40% reduction

3-D CC (~ 0.2 dpa) conductivity reduces by afactor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions
(to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by afactor of 6
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Neutron |rradiation Phase

Irradiation Exposure COMPLETED in June 2007

Materials include:

Copper/Glidcop
| sotropic graphite (1G-430)
Super-Invar/Gum metal/Ti-6Al-4V

Materials are in a“cool-down” phase
MARS analyses performed
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Irradiation Studies using the BNL Accelerator Complex
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Neutron Irradiation Studies using the BNL Accelerator Complex
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BOX 1: contains isotope production targets
which are expected to stop all protons and
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Neutron Irradiation Studies using the BNL Accelerator Complex

PROTON Flux & Dose
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Irradiation Studies using the BNL Accelerator Complex

NEUTRON Hux & Dose
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Irradiation Studies using the BNL Accelerator Complex
TOTAL Absorbed Dose
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Irradiation damage assessment — to date

While carbon composites (including the 2-D carbon used in Phase I) exhibit
stability in their thermal expansion coefficient in the temperature range they are
expected to operate normally, they experience a dramatic change in their CTE
with increased radiation. However they are able to fully reverse the “ damage”
with thermal annealing

Carbon composites also showed that with increased proton fluence (> 0.2 10"21
p/cm2) they experience serious structural degradation. This finding was
confirmed for the family of such composites and not only for the 2-D composite
used in the IHC.

It was also experimentally shown that under similar conditions, graphite also
suffers structurally the same way as the carbon composites

Proton radiation was shown to not effect the thermal expansion of Copper and
Glidcop that are considered for Phase |1

Encouraging results were obtained for super-Invar, Ti-6Al-4V alloy and AlBeMet
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SUMMARY

e Information to-dateisavailable from low power
acceleratorsand mostly from reactor (neutron irradiation)
experience. Extrapolation isnot allowed!

« Advancementsin material technology (alloys, smart
materials, composites) provide hope BUT must be
accompanied by R& D for irradiation damage

* Need to continue experimental activitiesthat will address,
In a systematic manner, radiation effects on new materials
for levelsthat are beyond the nominal power (already
discussionsfor upgrading the machine)
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