Irradiation damage in LHC beam collimating materials

N. Simos, BNL & N. Mokhov (FNAL)

..... with contribution from a great number of colleagues including

H. Kirk (BNL)

L.P. Trung (BNL/SBU)

J. O Conor (BNL)

Background

R&D Studies prompted by interest in High Power Targets

- Short term exposure (thermo-mechanical shock)
- Long term exposure (radiation damage)

While dreaming of of a 4 MW proton driver

Radiation Damage on materials could very well be the LIMITING Factor !!

What does it mean for materials (microscopic & macroscopic terms)?

generation of voids/dislocations \rightarrow changes in physical and mechanical properties

trapping of gases, swelling

→ density reduction

Experience mostly from reactor neutron irradiation Question: does radiation type matter?

In search of the wonder material

Beam Studies: Graphite & CC Composite at the AGS

WHY the love affair with CC in place of graphite?

Irradiation has a profound effect on thermal conductivity/diffusivity

CC composite at least allows for fiber customization and thus significant improvement of conductivity.

Materials for Collimators & Beam Absorbers

Yet to know for sure how carbon composites respond to radiation

Encouraging signs of 3D CC composite under modest irradiation levels "annealing" behavior with thermal cycling

And along came the SNS & LHC Collimators

Annealing behavior also exhibited by 2D Carbon!

(fluence ~ 10^20 protons/cm2)

Fiber (strong) direction

Weak direction (orientation normal to fibers)

- Non-irradiated shown in BLACK
- Effects of irradiation (captured in 1st post-irradiation thermal cycle) shown in RED
- Rest are additional thermal cycles that restore material through annealing
- Also shown are specimen activations in mCi
- Worth noting is the similar annealing behavior of specimens with same activation

LHC 2-D carbon composite along its weak direction

Materials for Collimators & Beam Absorbers

Signs of trouble !!

"weak" reinforcing fiber orientation

CONCERN: is damage characteristic of the 2-D structure or inherent to all carbon composites?

Materials for Collimators & Beam Absorbers

Follow-up Irradiation Phase for 2-D; 3-D Carbon composites and Graphite

Condition of most heavily bombarded specimens after irradiation (fluence ~10^21 p/cm2)

Collimators & Beam
Absorbers

Damage in Graphite

Graphite – Irradiation Effects on Bonding

While graphite has survived "quite" well in fission reactors (several dpa) it does not seem to endure the high proton flux (fluence ~ 10^21 p/cm2)

Collimation Irradiation Damage Studies – Exploring other materials

PRIMARY

- Copper (annealed)
- Glidcop_15AL Cu alloyed with .15% Al (axial cut and transverse cut)

SECONDARY

- Super-Invar
- Toyota "Gum Metal"
- Graphite (IG-430 "isotropic")

ALSO candidates under consideration

- Ti Alloy (6Al-4V)
- Tungsten
- Tantalum
- Low-Z alloy AlBeMet

THE PORT OF

Irradiation Effects on Copper (fluence ~ 10^21 protons/cm2)

Materials for Collimators & Beam Absorbers

Irradiation Effects on Glidcop

(fluence ~ 10^21 protons/cm2)

IRRADIATION EFFECTS ON GLIDCOP

Materials for Collimators & Beam Absorbers

Irradiation studies on super-Invar

- "inflection" point at around 150 C

Effect of modest irradiation

Annealing or defect mobility at elevated temperature

As-iorradiated	400°C	550°C	650°C	900°C
High density of dislocation	Reduce of dislocation	Formation of SFT	Dislocation loop	Formation of He bubble
	A SE			
	Tare and	70	1	
		11 00	لأ	0
Direction.	196	-10		50ni

Y. Ishiyam et. al., J. Nucl. Mtrl. 239 (1996) 90-94

"annealing" of super-Invar

Following 1st irradiation

Following annealing and 2nd irradiation

ONGOING 3rd irradiation phase: neutron exposure

Materials for Collimators & Beam Absorbers

Irradiation & temperature effects on Super-Invar

Materials for Collimators & Beam Absorbers

Studies of Gum Metal (Ti-12Ta-9Nb-3V-6Zr-O)

[Fig.1] Position of Young's Modulus and Strength of GUM MET

- Super elasticity
- Super plasticity
- Invar property (near 0 linear expansion) over a wide temp range
- Elinvar property (constant elastic modulus over a wide temp range)
- Abnormality in thermal expansion "unrelated" to phase transformation
- It exhibits a dislocation-free plastic deformation mechanism

2nm

RESULT of cold-working!!!

Effects of radiation and temperature on Gum metal

Materials for Collimators & Beam Absorbers

Radiation Damage Studies - Other Candidates

Materials for Collimators & Beam Absorbers

Radiation Effects on Conductivity

Electrical resistivity Thermal conductivity

Materials for Collimators & Beam Absorbers

Some VERY preliminary results

Glidcop in both axial and transverse directions (~ 1 dpa) sees 40% reduction

3-D CC (~ 0.2 dpa) conductivity reduces by a factor of 3.2

2-D CC (~0.2 dpa) measured under irradiated conditions (to be compared with company data)

Graphite (~0.2 dpa) conductivity reduces by a factor of 6

Neutron Irradiation Phase

Irradiation Exposure COMPLETED in June 2007 Materials include:

Copper/Glidcop Isotropic graphite (IG-430) Super-Invar/Gum metal/Ti-6Al-4V

Materials are in a "cool-down" phase MARS analyses performed

Irradiation Studies using the BNL Accelerator Complex

Schematic of BLIP Beam Line Target Lay-out

Materials for Collimators & Beam Absorbers

Neutron Irradiation Studies using the BNL Accelerator Complex

BOX 1: contains isotope production targets which are expected to stop all protons and generate a neutron flux downstream

Neutron Irradiation Studies using the BNL Accelerator Complex PROTON Flux & Dose

Irradiation Studies using the BNL Accelerator Complex NEUTRON Flux & Dose

Irradiation Studies using the BNL Accelerator Complex TOTAL Absorbed Dose

Irradiation damage assessment – to date

- While carbon composites (including the 2-D carbon used in Phase I) exhibit stability in their thermal expansion coefficient in the temperature range they are expected to operate normally, they experience a dramatic change in their CTE with increased radiation. However they are able to fully reverse the "damage" with thermal annealing
- Carbon composites also showed that with increased proton fluence (> 0.2 10^21 p/cm2) they experience serious structural degradation. This finding was confirmed for the family of such composites and not only for the 2-D composite used in the lHC.
- It was also experimentally shown that under similar conditions, graphite also suffers structurally the same way as the carbon composites
- Proton radiation was shown to not effect the thermal expansion of Copper and Glidcop that are considered for Phase II
- Encouraging results were obtained for super-Invar, Ti-6Al-4V alloy and AlBeMet

SUMMARY

- Information to-date is available from low power accelerators and mostly from reactor (neutron irradiation) experience. Extrapolation is not allowed!
- Advancements in material technology (alloys, smart materials, composites) provide hope BUT must be accompanied by R&D for irradiation damage
- Need to continue experimental activities that will address, in a systematic manner, radiation effects on new materials for levels that are beyond the nominal power (already discussions for upgrading the machine)