Beam absorbers for Machine Protection at LHC and SPS

B.Goddard CERN AB/BT

Based on the work of many colleagues, in particular:

B.Balhan, L.Bruno, T.Kramer, M.Gyr, Y.Kadi, V.Kain, L.Massiddi, A.Presland, L.Sarchiapone, E.Vossenberg, W.Weterings

The LHC and SPS Machine Protection Absorber Zoo

Absorbers for machine protection -

- Dedicated beam intercepting devices to protect downstream elements against specific failures – in general those of fast pulse kicker magnets. Solicited for accident cases (hopefully rare)
- Beam dumps which need to be able to repeatedly absorb full beam, on a regular basis. For these beams are often deliberately swept or diluted to reduce the energy density

	* neutrinos				<u>intercepics</u>		
Absorber system	Proton energy	Sigma H	Sigma V	Total Intensity	Beam energy	Sweep dilution	Energy density
	GeV	mm	mm	p+	MJ	factor	MJ/mm2
SPS internal beam dump	450	0.4	0.8	3E+13	2.4	50	0.02
SPS extraction protection	450	1.0	0.4	3E+13	2.4	1	0.83
SPS-LHC transfer protection	450	0.8	0.6	3E+13	2.4	1	0.79
LHC injection protection	450	0.9	0.6	3E+13	2.4	1	0.69
LHC extraction protection (I)	7000	0.28	0.34	6E+12	6.4	17	0.33
LHC extraction protction (II)	7000	0.48	0.28	4E+12	4.6	18	0.18
LHC beam dump	7000	1.59	1.36	3E+14	362	150	0.20

SPS beam characteristics

LHC beam extraction from the SPS

- 450 GeV/c, 288 bunches at 25 ns spacing
- Transverse beam size ~0.7 mm (1 σ) with $\epsilon_n \approx 3.5 \pi$.mm.mrad
- 1.15 x 10¹¹ p+ per bunch, for total intensity of 3.3 x 10¹³ p+
- Total beam energy is 2.4 MJ

Well above damage limit

- Limit of about 2 x 10¹² 450 GeV p+ (material at ~melting point)
- FLUKA + benchmark studies
- Normal incidence

Fast loss limit

~5 % of extracted beam

Beam damage during LHC beam extraction from SPS

LHC beam characteristics

Absorbers for SPS extraction

- Fast extraction in H plane with orbit bump, fast kickers and DC septum
- Fixed absorber to protect extraction septum magnets (expensive, delicate, water-cooled and radioactive)

Absorbers for SPS extraction

- Essentially a 'dummy septum" which must dilute the energy deposition to a safe level
- Dedicated device used to protect the local downstream element
- Stringent design criterion: septum water ΔT of $9^{o} \rightarrow 20$ bar ΔP (more constraining that Cu damage limit)
- Space constraints: only ~3 m septum is just downstream
- No room for more material
- No drift length between absorber and septum
- Difficult to get absorber AND septum to survive design impact
- Bad surprises with dynamic thermal stresses

Absorbers for SPS-LHC transfer systems

- Generic protection against failures during beam transfer
- Multiple phase coverage (since source of error unknown)
- Short (~1 m) C devices provide very large effective dilution at

lower energies by nuclear interaction 450 GeV 1.77 g/cc Total dilution **AND** emittance growth by scattering

Absorber is a "diluter + mask" system

Absorbers for injection protection

 Injection into LHC - in case of injection kicker failures have dedicated mobile absorbers and fixed secondary masks

Absorbers for injection protection

- Main absorber is designed to 'stop' the beam
 - 4.2 m long, with 2.9 m hBN, 0.6 m Al and 0.7 m Cu.
- Grazing incidence cases give a lot of energy escaping
 - Downstream fixed 'mask' to protect the superconducting dipole coils

LHC beam dump system (and acronyms)

Beam dump block

- 700 mm Ø graphite core, with graded density of 1.1 g/cm³ and 1.7 g/cm³
- 12 mm wall, stainless-steel welded pressure vessel, at 1.2 bar of N₂
- Surrounded by ~1000 tonnes of concrete/steel radiation shielding blocks

Temperature rise in dump block

Beam drifts for ~500 m (gives large 1.5 mm σ) and swept ~100 cm by active dilution kickers

Dump failures

Synchronisation of dump with circulating beam

Beam losses will occur if:

- the dump trigger is not synchronised with the abort gap
- the abort gap contains spurious particles
- the extraction kicker field is not in tolerance
- the local orbit is out of tolerance

absorbers

Local absorbers for dump failures

- Dedicated "robust" absorbers in dump region
 - Fixed 6 m long absorber to protect extraction septum
 - Mobile 6 m long single-sided absorber at \sim 7 σ from the beam
 - Mobile 2-sided absorber (LHC secondary collimator) for precise adjustment and positioning
 - Fixed 2 m long steel mask to protect quadrupole and downstream LHC elements
- Also protection elements on each triplet (last resort) Ralph's talk.

Fixed diluter to protect extraction septum

Mobile absorber to protect Q4 and LHC aperture

- Positioned close to beam (\sim 7 σ) means large load for asynchronous dump
 - 6 m long single jaw graphite absorber, 1 m long 2-jaw collimator and 2 m fixed Fe mask
 - No damage, but quench of ~10-20 SC magnets expected after asynchronous dump

Different difficulties and solutions for each problem

Dumps in SPS and LHC –active dilution to reduce energy density

- Full beam can be stopped in single device
- A lot of the "design challenge" is in the extraction and dilution system

Local protection of SPS and LHC extraction septa

- Generally space limited need 'advanced' sandwich constructs
- Some surprises from design constraints e.g. low allowed water ΔT
- Robustness of absorber material a major issue especially higher Z parts

Generic protection of LHC using multi-phase absorbers

- Use 'diluter + drift + mask' to dilute primary beam and protect local elements
- Difficulties arise with heating of local elements when drift insufficient

Specific protection devices for LHC injection kicker failures

- Low Z jaws need to be mobile, to close around the beam at injection
- Fixed masks help safety margin and to avoid quenches
- Mechanical tolerances important with large (~4 m long) absorbers

Dedicated system to protect against asynchronous beam dumps

- Mobile jaws and 6 m C length to dilute primaries material robustness issues
- Drift and secondary masks needed to protect local elements
- Issues of interference with collimation

Future directions and limitations....?

Many potential different areas for research and development in future

 Increasing intensity and energy in SPS or LHC...existing devices and solutions already at limit in some cases!!

Some of the upgraded problems can be solved by addressing loading

- E.g. more blow-up or dilutions systems
- Also "clever" system design e.g. iron Lambertson septum elements....

Others will require improvements to materials to improve performance

- Rediscover in several devices 'sandwich' of CC-Ti-SS
- Carbon composite seems to be ideal low-Z material
- Main requirement would seem to be robust higher Z materials to obtain higher overall absorption – more radiation lengths in same space
- Any industrially available magical materials on the horizon????

Other possibilities may also warrant R&D

- Single-use or disposable devices for 'rare' accident cases
- Multiple-stage absorbers (as already beginning to be used)
- Magnetized absorber materials, cryogenic absorbers, ...

Or may just have to have more space...

Already about 20 m in LHC layout per beam for mobile bump protection system