

Finite Element Methods for the Thermo-mechanical analysis of the Phase I Collimators

Workshop on **Materials for Collimators and Beam Absorbers**

3-5 Septermber, 2007

CERN Geneva

Alessandro Bertarelli¹ Alessandro Dallocchio^{1,2}

¹TS department – Mechanical and Material Engineering Group CERN, Geneva

²Mechanical Engineering Department – Politecnico di Torino, Italy

Outline

Introduction

- Application of the Thermal load
- Coupled Thermo-structural analysis (Fully elastic)
- Sequential Fast-transient thermostructural analysis (elastic-plastic)
- Conclusions

CERN **Collimator Main Features (1)** (3) **(2)** (6)**Jaw Bloc Assembly** (1) Collimating Jaw (C/C composite) (2) Main support beam (Glidcop) (2)(3) Cooling-circuit (Cu-Ni pipes) **(1)** (4) Counter-plates (Stainless steel) **(4)** (5) Clamping plates (Glidcop) (6)(3)(6) Preloaded springs (Stainless steel)

Objectives of the Thermo-structural analyses

Verify heat loads are effectively evacuated without attaining excessive temperatures

Verify that thermal deformations are kept to a minimum in steady-state and transient regimes

Verify the jaw and metal support survive to thermal shocks (⇒ See also A. Dallocchio's talk)

Ansys Multiphysics

GERN

Outline

- Introduction
- Application of the Thermal loads
- Coupled Thermo-structural analysis (Fully elastic)
- Sequential Fast-transient thermostructural analysis (elastic-plastic)
- Conclusions

Application of Thermal Loads

Step3. These 2D matrices (for each station) are read into ANSYS as a 3D table and applied to the FEM model as Internal Heat Generation. Ansys then linearly interpolates values between each station.

ANSYS linearly interpolates heat loads between matrices in **longitudinal** direction

GERN

Outline

- Introduction
- Application of Heat Generation
- Coupled Thermo-structural analysis (Fully elastic)
- Sequential Fast-transient thermostructural analysis (elastic-plastic)
- Conclusions

A fully coupled thermal/structural analysis (i.e. the simultaneous resolution of temperature and displacement fields) is required since pressed-contact thermal conductance depends on contact pressure, which in turn varies with deformations.

$$h_c(P) = 1.49 \frac{k_S \Delta_a}{R_q} \left(\frac{2.3P}{E_G \Delta_a}\right)^{0.935}$$

Equation relating thermal conductance *h* to Pressure *P*

This relation, implemented in Ansys FE model, has been experimentally validated

Finite Element Model for 3-D Coupled Thermal-Structural Analysis Steady-state (L.C. 1) and Slow-transient (L.C. 2)

• D.O.F..: ux, uy, uz, T

- SOLID5 8node Coupled Elements ~70000nodes
- Linear elastic materials with temperature-dependent properties
- 3-D linear orthotropic model for C-C jaw
- 3D Contact elements: d.o.f.: CONTA173 - TARGET170 ux, uy, uz, T
- Lagrange and penalty method (for precision and convergence)
- **Contact Friction taken into** account
- Thermal contact conductance h function of contact pressure P

Finite Element Model for 3-D Coupled Thermal-Structural Analysis

CERN

Thermo-mechanical analysis

Thermal analysis – Load Case 1 (Nominal conditions) – Steady state – Loss rate 8x10¹⁰ p/s – 4.5kW (Beam Lifetime 1h)

Displacement analysis - Load Case 1 (Nominal conditions) -

Thermal analysis – Load Case 2 (Nominal conditions) – 10s Transient – Loss rate 4x10¹¹ p/s - 22kW (Beam Lifetime 12min)

PMM = 150E=0

- 10ms transient ramp from L.C.1 to L.C.2 (20 sub-steps)
- 10s transient analysis at L.C.2 (20 sub-steps)
- 10ms transient ramp from L.C.2 to L.C.1 (20 sub-steps)
- 20s transient analysis at L.C.1 (20 sub-steps)
- Final quasi-static load step at L.C1

Initial temp. from quasi-static analysis - Max. temp. after 10s 76.2°C

Displacement analysis - Nominal conditions - Load Case 2 10s Transient – Loss rate 4x10¹¹ p/s – 30kW (Beam Lifetime 12min)

Initial loss 8e10p/s Max. deflect. ~20μm

CERN

Transient loss 4e11p/s during 10s

Max deflect. -108μm Back to 8e10p/s

GERN

Outline

- Introduction
- Application of Heat Generation
- Coupled Thermo-structural analysis (Fully elastic)
- Sequential Fast-transient thermostructural analysis (elastic-plastic)
- Conclusions

CERN

Simulation of Beam impact accidents

A fast-transient analyses are necessary to simulate accident scenarios: in particular 450 GeV Injection error test ...

Sequential analysis

Can we perform these analysis with Ansys Multiphysics, an implicitintegration scheme Finite Element code?

- Ansys fully coupled thermal/structural analyses can only be performed in the linear elastic domain
- Numerical analyses in the elastic/plastic domain are necessary to simulate possible permanent deformation of metallic parts in case of accidents (as those found after 2004 Injection error test)

But

- Accident cases entail fast energy depositions (a few μs or less)
- Given the typical thermal diffusion times ($\sim ms$ or more $-\tau_{\rm diff} = L^2/\kappa$), heat conduction plays a minor role in case of very short time-scale analyses.
- Hence, thermal and structural analyses can be decoupled and sequentially solved with Ansys Multiphysics

The price to pay ...

Be patient ... very short time-steps ($\Delta T < 0.9 L_{mesh}/c < 1 \mu s$), at each step inversion of the stiffness matrix ⇒ very long CPU times

CERN

Thermal analysis

Temperature distribution as a function of time

Temperature distribution at time t = 60ms

- Temperature distributions from thermal analysis were applied at different sub-steps (time)
- **Ansys linearly interpolates** between sub-steps loads so quite closely following actual temperature evolution

Fast-transient structural analysis

Collimator jaw oscillates several ms after the beam impact - Thermally induced vibrations have been fully studied with a 3D FE model in the elastic-plastic domain (see A. Dallocchio's talk for more details).

Predicted permanent deformation is not zero (because of limited plasticity on the CuNi pipes) but well within limits (16 µm)

GERN

Outline

- Introduction
- Application of Heat Generation
- Coupled Thermo-structural analysis (Fully elastic)
- Sequential Fast-transient thermostructural analysis (elastic-plastic)
- Conclusions

Conclusions I

- In-depth thermo-structural simulations were performed on Phase I collimator models from the early stages allowing design optimization; variable thermal loads from FLUKA were applied making use of 3-D tables.
- Thermal/structural coupled elements used. On relatively <u>long time-scales</u>, it is not possible to separate the two domains (thermal conductance depends on contact pressure), making the problem intrinsically coupled.
- For contact elements (which include friction) the *Lagrange and Penalty* method was used allowing control of contact penetration.
- Studies of solutions accuracy, influence of mesh dimensions and timesteps were done.
- Comparisons with analytical calculations and experimental results were performed to validate FE models.

Conclusions II

- Sequential fast-transient thermo-structural analyses were performed in the elastic-plastic domain to predict collimator behavior in case of beam impacts.
- Solutions allowed to study thermally-induced vibrations on the short time scale and predict residual deformations on the long time-scale.
- We believe Ansys Multiphysics can be successfully applied for the reliable solution of complex fast-transient thermo-mechanical problems, provided changes of phase are not occurring or stress level is well below material Young's modulus (⇒ hydrodynamic theory)
- The main implicit method drawback is long solution times imposed by very short time-steps (this can be offset by powerful hardware)