state heavy ion operation
Collimation concepts for beam ions
after a charge change

CERN Collimator Workshop 3rd-5th Sep. 2007
Jens Stadlmann, FAIR Synchrotrons

Lattice optimization for low chargé:'\"'7?’“2:;
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Contents =

« Motivation: Heavy ions of intermediate charge states for the
FAIR project at the GSI

« Benchmarking of different lattice concepts for SIS100
e Conclusion

3rd-5th September J. Stadlmann
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The Future Accelerator Facility - FAIR

SIS 100/300

Gain Factors

= Primary beam intensiy : x 100 — 1000
= Secondary beam intensiy : x 10000

= lon energy : X 15

= New: cooled pbar beams (15 GeV)

= Special : intense cooled RIBs

= Parallel operation and time sharing

3rd-5th September J. Stadlmann
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~ Motivation: Beam Life Time in FAIR Synchrotrons ===

High intensity, heavy ion beams require intermediate charge states

— U28* _jon beam

: : Static Pressure

0 20 40 60 80 100 120 140 160 180 200 0 500 1000 1500 2000 2500
Energy [MeV/u] Time [ms]

® | ife Time of U28* is

1000

| —— Chopper window : 10 us
' —— Chopper window : 80 us

—
(=]
o

Dynamic Pressure

Beam Life Time [sec]
- a

Number of U28+_1ons [x109]
o — ] oW o+ on (o] -~ [++]

01

» Desorption Processes degenerate

. . 73+
significantly shorter than of U the residual gas pressure

= Life Time of U%®* depends = Beam losses increase with
strongly on the residual gas number of injected ions
pressure and gas components (vacuum instability)

3rd-5th September J. Stadlmann
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" Residual Gas Pressure Dynamics

Fast variations (time scale ms) Slow variations (time scale s - h)
up to two orders of magnitude
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3rd-5th September J. Stadlmann
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- Main Issue: Vacuum Stabilization L B
= Short cycle time and short sequences
SIS18: 10 T/s - SIS100: 4 T/s i1 B e P s | s
(high pulse power > new network connection) Zﬁ—jim
= High pumping power, optimized XHV LTI
spectrum
SIS18: NEG coating (local and distributed) P
SIS100: Actively cooled magnet chambers 4.5 K o2 >< ?r‘;fsﬁeed
» | ocalization of losses and control PN —
of desorption gases on be|am wedge collimator
SIS18/SIS100: Desoprtion Scrapers L
SIS100: Optimized lattice structure . g < e
» Low-desorption rate materials a
Desorption rate and ERDA measurements mb/ T [

valve  oembar 10" mibar sample holder

= Minimization of systematic (inital) losses
3rd-5th September J. Stadlmann
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Initial loss mechanisms =

Coulomb-Scattering

!

Projectile-lonization
or B decay Desorption

3rd-5th September J. Stadlmann
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FAIR Special lattice layout to control the dynamic vaccum 4‘%

Basic principles

 The ions should not be lost at arbitrary positions.

 The losses should be peaked in sections with
sufficient space for a dedicated scraper system

 The scrapers should not reduce the acceptance.

* The circulating beam and the contaminants should
be clearly separated at the positions of the eparated!
scrapers which requires a waist in the beam
envelope and dispersive elements upstream.

« |deally all unwanted ions which are produced in the
downstream section after one scraper should be
able to be transported at least to the next
collimator. (High tune or increased aperture)

cceptance!

3rd-5th September J. Stadlmann



FAIR New Lattice Design Concept for U%8* 4‘%

Coulomb-Scattering

1. From all loss mechanisms, only charge change by /p
collisions with the residual gas atoms leads to loss et
within one lattice cell !

2. Each lattice cell is designed as a charge separator. The , stripped” beam ions (U%%)
are well separated from the reference beam. (The low dispersion function in the
SIS100 arcs complicate this issue.)

3. The main lattice structure optimization criteria is the catching efficiency for U?*-ions.
4. The catching efficiency for U%°- ions must be close to 100%.
5. The 100 % catching efficiency must be achieved with scrapers at maximum

distance from the beam edge. No acceptance reduction is caused by the catcher

system.

6. Theionization beam losses on cold and NEG coated surfaces shall be minimized.

Minimum additional load for the UHV and the cryogenic system.

3rd-5th September J. Stadlmann
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Comparison of Scraper Efficiency

100%

95% ;
—CDR
90% '— TR reference

85%

80% i
75% i

70%

ncoll = I\IcoII/NtotaI
at injection energy

catching efficiency

High charge scraping effciency was

reached by lattice (cell) optimization.

. = 100 = 200 w0 | Many lattice structures have been
horizontal catcher position / mm mrad com pared .

Strahlsim -> Talk by C. Omet

3rd-5th September J. Stadlmann
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v

- SIS 100 Design |: Lattice Choice and Optimization

Comparison of scraper efficiency of all studied lattices

Vergleich alle Lattices
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3rd-5th September J. Stadlmann
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SIS100 design Il, the chosen structure

DF doublet lattice

A waist after the dispersive elements.

3rd-5th September J. Stadlmann
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SIS100 design Il ——

Problematic: FODO structure

bad good
One half cell is ok, next one is bad.

3rd-5th September J. Stadlmann
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S1S100 design IV ==

Not optimal: triplet structure

Would work, if all dispersive elements are in
the first half of the cell.

3rd-5th September J. Stadlmann
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FAIR SIS100 design V: Special lattice

Results and influence of better transmission

The doublet structure with high
momentum acceptance delivers best
results. An unwanted particle just

missing one collimator is "stored" A: Lattics ahne Speichemng ——
and can be collimated later. ——
Comparison Lattices Structures for SIS100 ]]—[ﬂ H_” || [Iir_!” IIE];I

100,0% %— — —— -
L-\-\\ T —e— CDR (Triplett) — : == _".-'- = ._ -
L>>\ 97,5% ¢ \I\\ \\ -a— FODO — = . - s ||
GC) m\ e Dublett :?12311.. monima :;,r:l
= 950% -
L;) —<— Speichermode Dublett
= " , , 20+
) B: Lattice mit Speicherung von U
- 92,5% - :
P, o T
e
§ ] H |
© 90.0% - [ | !
E 2 % = e ——— ——— — :
o &% — == = P ——
O : , 2
- sl Kollimator |8
85,0% T ) T T A} T T 0t m |
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distance from beam edge [x/beam radius]

3rd-5th September J. Stadlmann
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FAIR Problem 1: Multiple lonisation

= == I
> 5 L] L] L Ll L] Ll L)
< ' SIS18 LEAR
(D .
= _ R. Olsen et.al., HIFO4 28+ experimental
% SIS18 injection energy P =3.67x1011 P =2.87x101
Q D

S5 4 4
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_—O . lonization cross sections for U”" ions at 5.9 Me\/u
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o 10 A. Smolyak

s . Smolyakov

E [MeV/u] 2o
T3 3 3 B R n B b

Muclear charge Z

Multiple ionization reduces the scraping efficiency

Cross section interpolation

The total number of multiple ionized particles is low
3rd-5th September
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"™ Problem 2: Different worng points ==
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The scraping efficiency depends slightly on the tune.

3rd-5th September J. Stadlmann
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- Problem 3: Behaviour of lighter ions =
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» The scraper system is optimized for heavy ions.

= Lighter ions miss the scraper and are dumped in the beam pipe.

» The loss rate of light ions is low, since the cross sections are lower (will be calculated).

3rd-5th September

J. Stadlmann
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SIS100 scraper position

s

path length [mm]

80.

-X[mm].. +x[mm]

-80.

Envelopes at maximum acceptance show the position of
the cathersnot interacting with the stored beam.

3rd-5th September J. Stadlmann



FAIR Beta Beam loss in existing PS

HeB beam
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FAIR Betabeam loss in an possible new PS F“’%

HeB beam
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Conclusion and Outlook =

 We found a SIS100 lattice concept for FAIR heavy ion
operation which limits the charge exchange induced
losses to a dedicated scraper system

* No ions are lost on cold surfaces during U%8* Operation

e The scraper system does not limit the machine's
acceptance

e Basic principles of peaked loss distribution can be applied
to other problems (Beta beams at CERN)

o Studies for light ions and fragments passing the scrapers
have to be done

3rd-5th September J. Stadlmann



