

Updates on EM Physics

V.Ivanchenko for Geant4 EM standard group Geant4 Technical Forum 8 November 2011

Outline

- Short list of modifications
- Material category
- Updates on standard EM models
- Updates on EM infrastructure
- Summary

We will focus on standard EM developments

Short list of the most important modifications in standard EM

- Based material approach
- EM standard models
 - G4UrbanMscModel95
 - G4SeltzerBergerModel
- Infrastructure
 - Biasing options
 - Option2 (EMX) is oriented to LHCb requirements
 - Configuration of EM options in G4PhysListFactory
 - Initialisation of muon/hadron bremsstrahlung and pair production is improved

Summary of EM low-energy (S.Incerti)

- Development of Low Energy EM Physics is on-going with strong connection with the Standard EM WG
 - For the first time in Geant4 history, coherent approach of modelling of EM interactions in Geant4
 - Situation easier for users, easier for developers
 - Common validation effort
- Main achievements
 - Penelope 2008
 - Common atomic deexcitation interface
 - Extension of Geant4-DNA Physics
- Thank you for your attention

Material category

Base material approach

- Material may be constructed using existing ("based") material
 - Allowing reuse all corrections and data tables of Geant4 NIST materials for any user defined material
- The goal: reducing initialisation time and size of data tables
- Feasible applications
 - Needed for DNA where density of a voxel may be function of geometry definition
 - Medical applications (DICOM)
 - Definition of atmosphere
 - May be useful for HEP and any other complex simulation

Base material approach

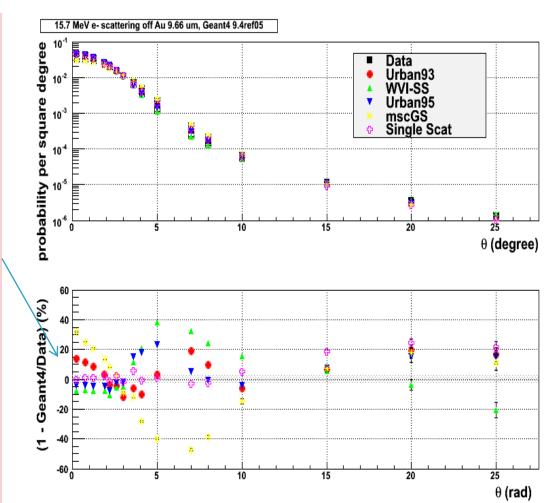
New constructor of G4Material:

G4Material(newName, density, baseMaterialPointer)

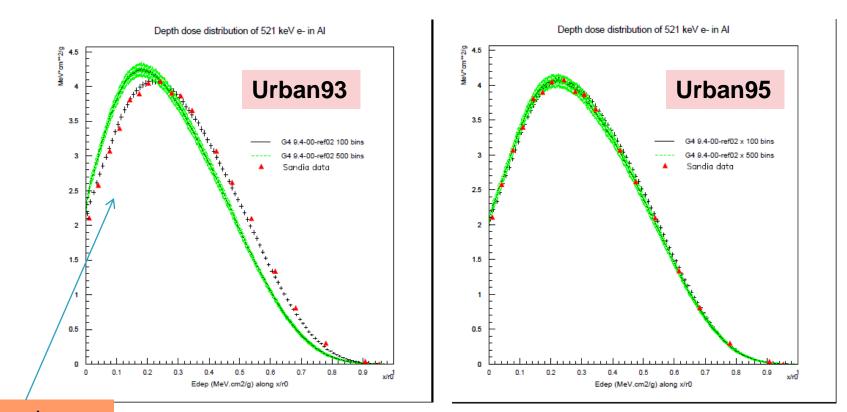
- Alternatively, new method in G4NistManager: BuildMaterialWithNewDensity(newName,baseName, density)
- Expect saving of initialisation time and executable size if several materials have the same base material

Updates on standard EM models

List of updated standard models


	Model	Status	Phys List
1	G4UrbanMscModel95	tuned	All except Opt2
2	G4SeltzerBergerModel	New bremsstrahlung	Standard and Livermore
3	G4PEEffectFluoModel	Added deexcitation	All standard
4	G4KleinNishinaModel	Added de-excitation and Doppler broading	Opt2, Opt3
5	G4MollerBhabhaModel	Reduced low-limit	All standard
6	G4XrayRayleighModel	Fast model	
7	G4PAIModel	Reduced low-limit	
8	G4eCoulombScatteringModel	Low–limit1 keV	All for muons
9	G4WentzelVIModel	Low–limit 1 keV	All for μ^{\pm} , Opt2, Opt3 for hadrons
10	G4eSingleCoulombScatteringModel	New single scattering	

Upgrade of multiple scattering


- Old default G4UrbanMscModel93 will be kept for backward compatibility
- New G4UrbanMscModel95 becomes default since 9.4ref08 – it is an upgraded version of the Urban model
 - Improved lateral displacement sampling
 - Added sampling along Z-axis
 - Improved tail sampling
- Validation tests show similar or improved results with the new model
- Fixes are made also for alternative models
 - G4GoudsmithSaundersonMscModel
 - G4WentzelVIModel

Electron scattering test for the Hanson data (15.7 MeV e⁻ in Au)

- Single scattering model is the most precise
- Urban95 is better for central part and tail than other msc models
- Goudsmith-Saunderson model has lower precision than Urban

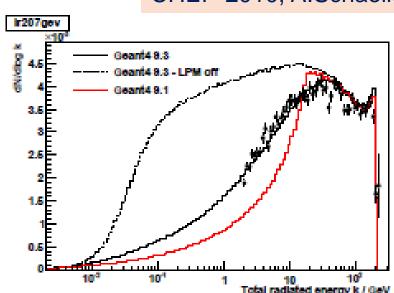
SANDIA data for 0.521 MeV electron transport in Al media with step limitation (L.Urban)

More strict step limit provides biased results

Urban95 is more stable than Urban93

New bremsstrahlung model: motivation

- ATLAS and CALICE reported that EM shower shape agree well in a core but overestimate tails (1-2%)
- CMS reported non-ideal agreement between LHC isolated EM shower and Geant4
- Different option on top of default EM physics were studied:
 - Multiple scattering
 - Step limitation
 - Cuts
 - Bremsstrahlung
 - Compton
 - Polarized processes
- Only extrapolation of relativistic bremsstrahlung down in energy make some effect

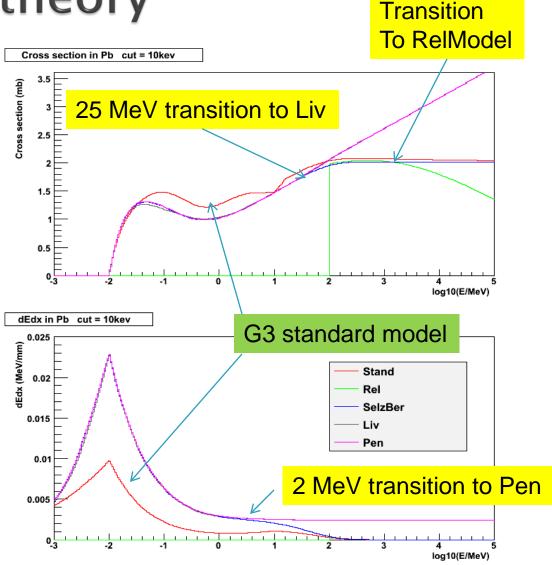

Physics validation - Bremstrahlung & Pair production

New relativistc bremsstrahlung model

- Bethe-Heitler formula with corrections
- complete screening (valid E > 1 GeV)
- includes density and LPM effect and consitent combination a'la Ter-Mikaelian
- available since Geant4 version 9.2

New relativistc pair production model

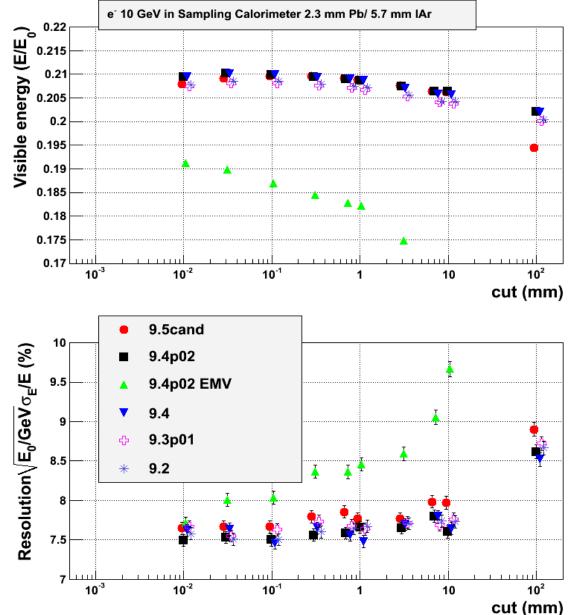
- includes LPM effect
- ▶ important only for E > 1 − 10 TeV
- availble since Geant4 version 9.3



CHEP`2010, A.Schaelicke

Data: H.D. Hansen et al., Phys.Rev.D 69, 032001 (2004)

New bremsstrahlung model Fully based on theory


- Seitler–Berger model:
 - Has a smooth transition to the relativistic model at 1 GeV
 - Practically coincide with Livermore model below
 25 MeV and with Penelope model below
 3 MeV
- It requires data set G4EMLOW6.23

1 GeV

ATLAS barrel

- Visible energy and resolution are stable within 1 % since Geant4 8.3
- There is no change in the calorimeter response between 9.4 and 9.4p01

Updates on EM infrastructure

Physics based EM biasing options

• New options are added to EM infrastructure:

- Cross section biasing
- Forced interaction of primary
- Secondary splitting
- Russian roulette for secondary
- Simple UI commands activate/deactivate biasing options for any EM Physics Lists per process and G4Region
- Motivations:
 - Study of uncertainty effects
 - Speed up simulation

EM Physics List constructors for High Energy Physics

- May be used in any application domain
- From 9.5 G4LEDATA data set become mandatory

Constructor	Components	Comments
G4EmStandardPhysics	Default (QGSP_BERT, FTFP_BERT)	ATLAS, and other HEP productions, other applications
G4EmStandardPhysics_option1	Fast due to simple step limitations, cuts used by photon processes (_EMV)	Similar to CMS production, good for crystals not good for sampling calorimeters
G4EmStandardPhysics_option2	Fast due to simple step limitations, cuts used by photon processes, msc93, WVI for hadrons (_EMX)	Trying to address LHCb requirements

Combined EM Physics List constructors

- > For today focus more to precision than to maximum simulation speed
- Ion stopping model based on the ICRU'73 data
- > Strongly recommended for hadron/ion therapy and space applications

Constructor	Components	Comments
G4EmStandardPhysics_option3	Strict step limitation (_EMY)	Any application
G4EmLivermorePhysics	Msc95, strict step limitation, Livermore models for γ below 1 GeV, for e ⁻ bremsstrahlung below 25 MeV, ionisation – below 100 keV	Any application, de-excitation module active by default
G4EmPenelopePhysics	UrbanMsc95 model Penelope models for γ, e [±] below 1 GeV, Standard models above 1 GeV	Any application, de-excitation module active by default

G4PhysListFactory

- With 9.5 we will have the possibility to use all EM options – standard and low–energy with any reference Physics List
 - Simple if G4PhysListFactory is used
- Physics List name is analyzed and if at the end there are 4 characters corresponding to one of EM builders then this builder is used:
 - "_EMV" standard Opt1
 - "_EMX" standard Opt2
 - "_EMY" standard Opt3
 - "_LIV" Livermore
 - "_PEN" Penelope

 By default the standard EM builder Opt0 is assumed

Summary

- EM physics (in particular standard) was significantly improved
 - Backward compatibility to 9.4 and 9.3 is provided old models are frozen and kept
- The most significant model development for the standard EM package:
 - G4UrbanMscModel95
 - G4SeltzerBergerModel
- The most significant changes in user interface:
 - G4LEDATA set is mandatory for all Physics Lists
 - EM builders may be easily selected via Physics List name
 - EM biasing options may be activated via UI